IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Policy interactions, risk and price formation in carbon markets

  • Blyth, William
  • Bunn, Derek
  • Kettunen, Janne
  • Wilson, Tom
Registered author(s):

    Carbon pricing is an important mechanism for providing companies with incentives to invest in carbon abatement. Price formation in carbon markets involves a complex interplay between policy targets, dynamic technology costs, and market rules. Carbon pricing may under-deliver investment due to R&D externalities, requiring additional policies which themselves affect market prices. Also, abatement costs depend on the extent of technology deployment due to learning-by-doing. This paper introduces an analytical framework based on marginal abatement cost (MAC) curves with the aim of providing an intuitive understanding of the key dynamics and risk factors in carbon markets. The framework extends the usual static MAC representation of the market to incorporate policy interactions and some technology cost dynamics. The analysis indicates that supporting large-scale deployment of mature abatement technologies suppresses the marginal cost of abatement, sometimes to zero, whilst increasing total abatement costs. However, support for early stage R&D may reduce both total abatement cost and carbon price risk. An important aspect of the analysis is in elevating risk management considerations into energy policy formation, as the results of the stochastic modelling indicate wide distributions for the emergence of carbon prices and public costs around the policy expectations.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V2W-4X1GG38-4/2/6a0cbc0486ce6420adedd912b40f914b
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy Policy.

    Volume (Year): 37 (2009)
    Issue (Month): 12 (December)
    Pages: 5192-5207

    as
    in new window

    Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5192-5207
    Contact details of provider: Web page: http://www.elsevier.com/locate/enpol

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Mandell, Svante, 2008. "Optimal mix of emissions taxes and cap-and-trade," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 131-140, September.
    2. Marc Chesney & Luca Taschini, 2008. "The Endogenous Price Dynamics of the Emission Allowances: An Application to CO2 Option Pricing," Swiss Finance Institute Research Paper Series 08-01, Swiss Finance Institute, revised Jan 2008.
    3. Pizer, William & Newell, Richard, 1998. "Regulating Stock Externalities Under Uncertainty," Discussion Papers dp-99-10-rev, Resources For the Future.
    4. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    5. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Open Access Publications from Kiel Institute for the World Economy 3775, Kiel Institute for the World Economy (IfW).
    6. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    7. M. L. Weitzman, 1973. "Prices vs. Quantities," Working papers 106, Massachusetts Institute of Technology (MIT), Department of Economics.
    8. Dieter Helm & Cameron Hepburn & Richard Mash, 2003. "Credible Carbon Policy," Oxford Review of Economic Policy, Oxford University Press, vol. 19(3), pages 438-450.
    9. Luke Reedman & Paul Graham & Peter Coombes, 2006. "Using a Real-Options Approach to Model Technology Adoption Under Carbon Price Uncertainty: An Application to the Australian Electricity Generation Sector," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages S64-S73, 09.
    10. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    11. Richels, Richard G. & Blanford, Geoffrey J., 2008. "The value of technological advance in decarbonizing the U.S. economy," Energy Economics, Elsevier, vol. 30(6), pages 2930-2946, November.
    12. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    13. Steven Sorrell, 2003. "Carbon Trading in the Policy Mix," Oxford Review of Economic Policy, Oxford University Press, vol. 19(3), pages 420-437.
    14. Loreta Stankeviciute & Patrick Criqui, 2008. "Energy and climate policies to 2020 : the impacts of the european " 20/20/20 " approach," Post-Print halshs-00226208, HAL.
    15. Knut Einar Rosendahl, 2002. "Cost-effective environmental policy: Implications of induced technological change," Discussion Papers 314, Research Department of Statistics Norway.
    16. Kling, Catherine & Rubin, Jonathan, 1997. "Bankable permits for the control of environmental pollution," Journal of Public Economics, Elsevier, vol. 64(1), pages 101-115, April.
    17. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    18. Cameron Hepburn & Michael Grubb & Karsten Neuhoff & Felix Matthes & Maximilien Tse, 2006. "Auctioning of EU ETS phase II allowances: how and why?," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 137-160, January.
    19. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
    20. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    21. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
    22. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    23. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    24. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-54.
    25. Roques, F.A. & Nuttall, W.J. & Newbery, D.M. & de Neufville, R., 2005. "Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?," Cambridge Working Papers in Economics 0555, Faculty of Economics, University of Cambridge.
    26. Fischer, Carolyn, 2004. "Emissions Pricing, Spillovers, and Public Investment in Environmentally Friendly Technologies," Discussion Papers dp-04-02, Resources For the Future.
    27. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    28. Baker, Erin & Clarke, Leon & Shittu, Ekundayo, 2008. "Technical change and the marginal cost of abatement," Energy Economics, Elsevier, vol. 30(6), pages 2799-2816, November.
    29. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    30. del Ri­o González, Pablo, 2008. "Ten years of renewable electricity policies in Spain: An analysis of successive feed-in tariff reforms," Energy Policy, Elsevier, vol. 36(8), pages 2907-2919, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5192-5207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.