IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v117y2023ics0140988322005928.html
   My bibliography  Save this article

Trading, storage, or penalty? Uncovering firms' decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling

Author

Listed:
  • Wei, Yigang
  • Liang, Xin
  • Xu, Liang
  • Kou, Gang
  • Chevallier, Julien

Abstract

The emissions trading scheme (ETS) has become a flagship climatic initiative for regulating greenhouse gas (GHG) emissions. Under an ETS, the emitting firm must simultaneously deal with changing carbon prices and the number of permits and the trade-off between permit trading (if one should buy, sell, or reserve) and permit-consuming production. This study characterizes the different compliance strategies' trade-offs, logic, and options among regulated emitting firms under an ETS. Consequently, this study provides firm-level evidence of regulated firms' strategic responses under the Shanghai ETS, considering detailed firm information, heterogeneous industry characteristics, and ETS architects. The proposed model simulated the trading interactions among diversified firms to portray the firms' decision-making process, and the emergent effects on the ETS market were identified. The results indicate that: 1) the carbon price experiences a non-monotonic “L-shaped” trend, which maintains an initial low level and increases sharply after crossing a threshold; 2) with increasing carbon prices, the trading in ETS becomes more active, especially among the low-emission firms; 3) the current ETS penalty is too limited and generic, which inadequately induces technological development and carbon reduction among firms. Finally, policy suggestions are provided for future optimization of the ETS mechanism. Overall, this study contributes to operation management literature by evaluating decision-making behaviors in a dynamic environment. Our findings have global implications for policymakers and managers in the private sector.

Suggested Citation

  • Wei, Yigang & Liang, Xin & Xu, Liang & Kou, Gang & Chevallier, Julien, 2023. "Trading, storage, or penalty? Uncovering firms' decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling," Energy Economics, Elsevier, vol. 117(C).
  • Handle: RePEc:eee:eneeco:v:117:y:2023:i:c:s0140988322005928
    DOI: 10.1016/j.eneco.2022.106463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322005928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiting Gong & Sean X. Zhou, 2013. "Optimal Production Planning with Emissions Trading," Operations Research, INFORMS, vol. 61(4), pages 908-924, August.
    2. Chan, Hei Sing (Ron) & Li, Shanjun & Zhang, Fan, 2013. "Firm competitiveness and the European Union emissions trading scheme," Energy Policy, Elsevier, vol. 63(C), pages 1056-1064.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    5. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    6. Wei, Yigang & Li, Yan & Wang, Zhicheng, 2022. "Multiple price bubbles in global major emission trading schemes: Evidence from European Union, New Zealand, South Korea and China," Energy Economics, Elsevier, vol. 113(C).
    7. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    8. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    9. Innocent Bakam & Robin Matthews, 2009. "Emission trading in agriculture: a study of design options using an agent-based approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 755-776, December.
    10. Bingxin Zeng & Lei Zhu, 2019. "Market Power and Technology Diffusion in an Energy-Intensive Sector Covered by an Emissions Trading Scheme," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    11. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    12. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    13. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    14. Sandoff, Anders & Schaad, Gabriela, 2009. "Does EU ETS lead to emission reductions through trade? The case of the Swedish emissions trading sector participants," Energy Policy, Elsevier, vol. 37(10), pages 3967-3977, October.
    15. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    16. Quan Yuan & Youhua (Frank) Chen & Jian Yang & Yun Zhou, 2018. "Joint Control of Emissions Permit Trading and Production Involving Fixed and Variable Transaction Costs," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1420-1454, August.
    17. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    18. Wei, Yigang & Gong, Ping & Zhang, Jianhong & Wang, Li, 2021. "Exploring public opinions on climate change policy in "Big Data Era"—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter," Energy Policy, Elsevier, vol. 158(C).
    19. Kate Ervine, 2018. "How Low Can It Go? Analysing the Political Economy of Carbon Market Design and Low Carbon Prices," New Political Economy, Taylor & Francis Journals, vol. 23(6), pages 690-710, November.
    20. Richstein, Jörn C. & Chappin, Emile J.L. & de Vries, Laurens J., 2014. "Cross-border electricity market effects due to price caps in an emission trading system: An agent-based approach," Energy Policy, Elsevier, vol. 71(C), pages 139-158.
    21. Yu, Song-min & Fan, Ying & Zhu, Lei & Eichhammer, Wolfgang, 2020. "Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1113-1128.
    22. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    23. Okushima, Shinichiro & Tamura, Makoto, 2010. "What causes the change in energy demand in the economy?: The role of technological change," Energy Economics, Elsevier, vol. 32(Supplemen), pages 41-46, September.
    24. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    25. David F. Drake & Paul R. Kleindorfer & Luk N. Van Wassenhove, 2016. "Technology Choice and Capacity Portfolios under Emissions Regulation," Production and Operations Management, Production and Operations Management Society, vol. 25(6), pages 1006-1025, June.
    26. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    27. Junming Zhu & Yichun Fan & Xinghua Deng & Lan Xue, 2019. "Low-carbon innovation induced by emissions trading in China," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    28. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    29. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    30. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    31. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    32. Zhang, Bin & Xu, Liang, 2013. "Multi-item production planning with carbon cap and trade mechanism," International Journal of Production Economics, Elsevier, vol. 144(1), pages 118-127.
    33. Bowen Xiao & Dongxiao Niu & Han Wu & Haichao Wang, 2017. "Marginal Abatement Cost of CO 2 in China Based on Directional Distance Function: An Industry Perspective," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    34. Bingxin Zeng & Jun Xie & Xiaobing Zhang & Yang Yu & Lei Zhu, 2020. "The impacts of emission trading scheme on China’s thermal power industry: A pre-evaluation from the micro level," Energy & Environment, , vol. 31(6), pages 1007-1030, September.
    35. Rothkopf, Michael H., 1999. "Daily Repetition: A Neglected Factor in the Analysis of Electricity Auctions," The Electricity Journal, Elsevier, vol. 12(3), pages 60-70, April.
    36. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    37. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    38. Wu, Libo & Qian, Haoqi & Li, Jin, 2014. "Advancing the experiment to reality: Perspectives on Shanghai pilot carbon emissions trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 22-30.
    39. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yixiong & Zhang, Fengxuan & Wang, Yanwei, 2023. "How to facilitate efficient blue carbon trading? A simulation study using the game theory to find the optimal strategy for each participant," Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Song-min & Fan, Ying & Zhu, Lei & Eichhammer, Wolfgang, 2020. "Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1113-1128.
    2. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    3. Weiss, Olga & Bogdanov, Dmitry & Salovaara, Kaisa & Honkapuro, Samuli, 2017. "Market designs for a 100% renewable energy system: Case isolated power system of Israel," Energy, Elsevier, vol. 119(C), pages 266-277.
    4. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    5. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    6. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    7. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    10. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    11. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    12. repec:hal:spmain:info:hdl:2441/2qdhj5485p93jrnf08s1meeap9 is not listed on IDEAS
    13. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    14. Junjun Zheng & Mingmiao Yang & Gang Ma & Qian Xu & Yujie He, 2020. "Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective," IJERPH, MDPI, vol. 17(1), pages 1-20, January.
    15. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    16. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    17. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    18. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    19. Li, Pei-Hao & Barazza, Elsa & Strachan, Neil, 2022. "The influences of non-optimal investments on the scale-up of smart local energy systems in the UK electricity market," Energy Policy, Elsevier, vol. 170(C).
    20. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    21. Weigt, Hannes, 2009. "A Review of Liberalization and Modeling of Electricity Markets," MPRA Paper 65651, University Library of Munich, Germany.
    22. Tao, Zhenmin & Moncada, Jorge Andrés & Poncelet, Kris & Delarue, Erik, 2021. "Review and analysis of investment decision making algorithms in long-term agent-based electric power system simulation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    23. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:117:y:2023:i:c:s0140988322005928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.