IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v30y2008i4p1728-1759.html
   My bibliography  Save this article

A critical survey of agent-based wholesale electricity market models

Author

Listed:
  • Weidlich, Anke
  • Veit, Daniel

Abstract

The complexity of electricity markets calls for rich and flexible modeling techniques that help to understand market dynamics and to derive advice for the design of appropriate regulatory frameworks. Agent-Based Computational Economics (ACE) is a fairly young research paradigm that offers methods for realistic electricity market modeling. A growing number of researchers have developed agent-based models for simulating electricity markets. The diversity of approaches makes it difficult to overview the field of ACE electricity research; this literature survey should guide the way through and describe the state-of-the-art of this research area. In a conclusive summary, shortcomings of existing approaches and open issues that should be addressed by ACE electricity researchers are critically discussed.

Suggested Citation

  • Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
  • Handle: RePEc:eee:eneeco:v:30:y:2008:i:4:p:1728-1759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00017-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derek W. Bunn and Fernando Oliveira, 2001. "An Application of Agent-based Simulation to the New Electricity Trading Arrangements of England and Wales," Computing in Economics and Finance 2001 93, Society for Computational Economics.
    2. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    3. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    4. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    5. Muller, Moritz & Sensfu[ss], Frank & Wietschel, Martin, 2007. "Simulation of current pricing-tendencies in the German electricity market for private consumption," Energy Policy, Elsevier, vol. 35(8), pages 4283-4294, August.
    6. Hämäläinen, Raimo P & Mäntysaari, Juha & Ruusunen, Jukka & Pierre-Olivier Pineau,, 2000. "Cooperative consumers in a deregulated electricity market — dynamic consumption strategies and price coordination," Energy, Elsevier, vol. 25(9), pages 857-875.
    7. Koesrinartoto, D. & Sun, Junjie & Tesfatsion, Leigh, 2005. "An agent-based computational laboratory for testing the economic reliability of wholesale power market designs," ISU General Staff Papers 200501010800001043, Iowa State University, Department of Economics.
    8. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    9. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    10. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    11. Day, Christopher J & Bunn, Derek W, 2001. "Divestiture of Generation Assets in the Electricity Pool of England and Wales: A Computational Approach to Analyzing Market Power," Journal of Regulatory Economics, Springer, vol. 19(2), pages 123-141, March.
    12. Sun, Junjie & Tesfatsion, Leigh, 2006. "DC Optimal Power Flow Formulation and Solution Using QuadProgJ," Working Papers 18221, Iowa State University, Department of Economics.
    13. Micola, Augusto Rupérez & Banal-Estañol, Albert & Bunn, Derek W., 2008. "Incentives and coordination in vertically related energy markets," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 381-393, August.
    14. Koesrindartoto, Deddy P., 2002. "Discrete Double Auctions with Artificial Adaptive Agents: A Case Study of an Electricity Market Using a Double Auction Simulator," Staff General Research Papers Archive 10017, Iowa State University, Department of Economics.
    15. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    16. John Bower & Derek W. Bunn, 2000. "Model-Based Comparisons of Pool and Bilateral Markets for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-29.
    17. Robert Marks, 2007. "Validating Simulation Models: A General Framework and Four Applied Examples," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 265-290, October.
    18. Derek Bunn & Fernando Oliveira, 2003. "Evaluating Individual Market Power in Electricity Markets via Agent-Based Simulation," Annals of Operations Research, Springer, vol. 121(1), pages 57-77, July.
    19. Rothkopf, Michael H., 1999. "Daily Repetition: A Neglected Factor in the Analysis of Electricity Auctions," The Electricity Journal, Elsevier, vol. 12(3), pages 60-70, April.
    20. Holland, John H & Miller, John H, 1991. "Artificial Adaptive Agents in Economic Theory," American Economic Review, American Economic Association, vol. 81(2), pages 365-371, May.
    21. Tesfatsion, Leigh, 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," ISU General Staff Papers 200201010800001251, Iowa State University, Department of Economics.
    22. Silvano Cincotti & Eric Guerci, 2005. "Agent-based simulation of power exchange with heterogeneous production companies," Computing in Economics and Finance 2005 334, Society for Computational Economics.
    23. Jasmina Arifovic & John Ledyard, 2004. "Scaling Up Learning Models in Public Good Games," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 6(2), pages 203-238, May.
    24. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    25. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    26. Klemperer, Paul D & Meyer, Margaret A, 1989. "Supply Function Equilibria in Oligopoly under Uncertainty," Econometrica, Econometric Society, vol. 57(6), pages 1243-1277, November.
    27. Tony Curson Price, 1997. "Using co-evolutionary programming to simulate strategic behaviour in markets," Levine's Working Paper Archive 588, David K. Levine.
    28. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    29. Tony Curzon Price, 1997. "Using co-evolutionary programming to simulate strategic behaviour in markets," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 219-254.
    30. Nicolaisen, James & Smith, Matthew & Petrov, Valentin & Tesfatsion, Leigh, 2000. "Concentration and Capacity Effects on Electricity Market Power," Staff General Research Papers Archive 1847, Iowa State University, Department of Economics.
    31. Midgley, David & Marks, Robert & Kunchamwar, Dinesh, 2007. "Building and assurance of agent-based models: An example and challenge to the field," Journal of Business Research, Elsevier, vol. 60(8), pages 884-893, August.
    32. Koesrindartoto, Deddy P. & Tesfatsion, Leigh, 2004. "Testing the Reliability of FERC's Wholesale Power Market Platform: An Agent-Based Computational Economics Approach," Staff General Research Papers Archive 12326, Iowa State University, Department of Economics.
    33. Matteo Richiardi, 2003. "The Promises and Perils of Agent-Based Computational Economics," LABORatorio R. Revelli Working Papers Series 29, LABORatorio R. Revelli, Centre for Employment Studies.
    34. Bower, John & Bunn, Derek W. & Wattendrup, Claus, 2001. "A model-based analysis of strategic consolidation in the German electricity industry," Energy Policy, Elsevier, vol. 29(12), pages 987-1005, October.
    35. Ehlen, Mark A. & Scholand, Andrew J. & Stamber, Kevin L., 2007. "The effects of residential real-time pricing contracts on transco loads, pricing, and profitability: Simulations using the N-ABLE(TM) agent-based model," Energy Economics, Elsevier, vol. 29(2), pages 211-227, March.
    36. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    3. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Weidlich Anke & Veit Daniel, 2008. "Agent-Based Simulations for Electricity Market Regulation Advice: Procedures and an Example," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 149-172, April.
    5. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    6. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    8. Rahimiyan, Morteza & Rajabi Mashhadi, Habib, 2010. "Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics," Energy Policy, Elsevier, vol. 38(3), pages 1588-1595, March.
    9. Eric Guerci & Stefano Ivaldi & Silvano Cincotti, 2008. "Learning Agents in an Artificial Power Exchange: Tacit Collusion, Market Power and Efficiency of Two Double-auction Mechanisms," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 73-98, September.
    10. E. J. Anderson & T. D. H. Cau, 2009. "Modeling Implicit Collusion Using Coevolution," Operations Research, INFORMS, vol. 57(2), pages 439-455, April.
    11. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    12. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    13. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    14. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    15. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    16. Vinícius Ferraz & Thomas Pitz, 2024. "Analyzing the Impact of Strategic Behavior in an Evolutionary Learning Model Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 437-475, February.
    17. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    18. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    19. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    20. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    21. Fuentes, Rolando & Sengupta, Abhijit, 2020. "Using insurance to manage reliability in the distributed electricity sector: Insights from an agent-based model," Energy Policy, Elsevier, vol. 139(C).
    22. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:4:p:1728-1759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.