IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/200104280700001050.html
   My bibliography  Save this paper

Market Power and Efficiency in a Computational Electricity Market With Discriminatory Double-Auction Pricing

Author

Listed:
  • Nicolaisen, James
  • Petrov, Valentin
  • Tesfatsion, Leigh

Abstract

This study reports experimental market power and efficiency outcomes for a computational wholesale electricity market operating In the short run under systematically varied concentration and capacity conditions. The pricing of electricity is determined by means of a clearinghouse double auction with discriminator}- midpoint pricing. Buyers and sellers use a modified Roth-Erev individual reinforcement learning algorithm to determine their price and quantity offers in each auction round. It is shown that high market efficiency is generally attained, and that market microstructure is strongly predictive for the relative market power of buyers and sellers independently of the values set for the reinforcement learning parameters. Results are briefly compared against results from an eariier study in which buyers and sellers instead eng

Suggested Citation

  • Nicolaisen, James & Petrov, Valentin & Tesfatsion, Leigh, 2001. "Market Power and Efficiency in a Computational Electricity Market With Discriminatory Double-Auction Pricing," ISU General Staff Papers 200104280700001050, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:200104280700001050
    as

    Download full text from publisher

    File URL: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1050&context=econ_las_economicreports
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paul Klemperer, 1999. "Auction Theory: A Guide to the Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 13(3), pages 227-286, July.
    2. Paul Klemperer, 2002. "What Really Matters in Auction Design," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 169-189, Winter.
    3. Tesfatsion, Leigh, 2001. "Structure, behavior, and market power in an evolutionary labor market with adaptive search," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 419-457, March.
    4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    5. Bower, John & Bunn, Derek, 2001. "Experimental analysis of the efficiency of uniform-price versus discriminatory auctions in the England and Wales electricity market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 561-592, March.
    6. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    7. von der Fehr, Nils-Henrik Morch & Harbord, David, 1993. "Spot Market Competition in the UK Electricity Industry," Economic Journal, Royal Economic Society, vol. 103(418), pages 531-546, May.
    8. Paul Klemperer (ed.), 2000. "The Economic Theory of Auctions," Books, Edward Elgar Publishing, volume 0, number 1669.
    9. Rust, John & Miller, John H. & Palmer, Richard, 1994. "Characterizing effective trading strategies : Insights from a computerized double auction tournament," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 61-96, January.
    10. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    11. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    12. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Chen, Shu-Heng, 2012. "Varieties of agents in agent-based computational economics: A historical and an interdisciplinary perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 1-25.
    3. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    4. Narine Udumyan & Juliette Rouchier & Dominique Ami, 2014. "Integration of Path-Dependency in a Simple Learning Model: The Case of Marine Resources," Computational Economics, Springer;Society for Computational Economics, vol. 43(2), pages 199-231, February.
    5. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    6. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    7. Albert Banal-Estañol & Augusto Rupérez Micola, 2009. "Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market Prices," Management Science, INFORMS, vol. 55(11), pages 1813-1831, November.
    8. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    9. Klemperer, Paul, 2000. "Why every Economist should Learn some Auction Theory," CEPR Discussion Papers 2572, C.E.P.R. Discussion Papers.
    10. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    11. Arifovic, Jasmina & Karaivanov, Alexander, 2010. "Learning by doing vs. learning from others in a principal-agent model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1967-1992, October.
    12. Swider, Derk J. & Weber, Christoph, 2007. "Bidding under price uncertainty in multi-unit pay-as-bid procurement auctions for power systems reserve," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1297-1308, September.
    13. Paul Klemperer, 2002. "What Really Matters in Auction Design," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 169-189, Winter.
    14. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    15. Victorien Barbet & Renaud Bourlès & Juliette Rouchier, 2020. "Informal risk-sharing cooperatives: the effect of learning and other-regarding preferences," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 451-478, April.
    16. Juliette Rouchier, 2013. "The Interest of Having Loyal Buyers in a Perishable Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 151-170, February.
    17. Shu-Heng Chen & Yi-Lin Hsieh, 2011. "Reinforcement Learning in Experimental Asset Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 109-133.
    18. Shu-Heng Chen & Bin-Tzong Chie & Ying-Fang Kao & Ragupathy Venkatachalam, 2019. "Agent-Based Modeling of a Non-tâtonnement Process for the Scarf Economy: The Role of Learning," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 305-341, June.
    19. Pär Holmberg, 2009. "Supply function equilibria of pay-as-bid auctions," Journal of Regulatory Economics, Springer, vol. 36(2), pages 154-177, October.
    20. Marta Posada & Adolfo López-Paredes, 2007. "How to Choose the Bidding Strategy in Continuous Double Auctions: Imitation Versus Take-The-Best Heuristics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(1), pages 1-6.

    More about this item

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:200104280700001050. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Curtis Balmer). General contact details of provider: http://edirc.repec.org/data/deiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.