IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02375423.html
   My bibliography  Save this paper

Validation of Agent-Based Models in Economics and Finance

Author

Listed:
  • Giorgio Fagiolo

    (LEM - Laboratory of Economics and Management - SSSUP - Scuola Universitaria Superiore Sant'Anna [Pisa])

  • Mattia Guerini

    () (SSSUP - Scuola Universitaria Superiore Sant'Anna [Pisa], OFCE - Observatoire français des conjonctures économiques - Sciences Po - Sciences Po)

  • Francesco Lamperti

    () (Laboratory of Economics and Management (LEM) - SSSUP - Scuola Universitaria Superiore Sant'Anna [Pisa])

  • Alessio Moneta

    (SSSUP - Scuola Universitaria Superiore Sant'Anna [Pisa])

  • Andrea Roventini

    () (SSSUP - Scuola Universitaria Superiore Sant'Anna [Pisa], OFCE - Observatoire français des conjonctures économiques - Sciences Po - Sciences Po)

Abstract

Since the influential survey by Windrum et al. (2007), research on empirical validation of agent-based models in economics has made substantial advances, thanks to a constant flow of high-quality contributions. This Chapter attempts to take stock of such recent literature to offer an updated critical review of existing validation techniques. We sketch a simple theoretical framework that conceptualizes existing validation approaches, which we discuss along three different dimensions: (i) comparison between artificial and real-world data; (ii) calibration and estimation of model parameters; and (iii) parameter space exploration.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2019. "Validation of Agent-Based Models in Economics and Finance," Post-Print halshs-02375423, HAL.
  • Handle: RePEc:hal:journl:halshs-02375423
    DOI: 10.1007/978-3-319-70766-2_31
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-02375423
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Edoardo Gaffeo & Domenico Delli Gatti & Saul Desiderio & Mauro Gallegati, 2008. "Adaptive Microfoundations for Emergent Macroeconomics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 34(4), pages 441-463.
    3. Goldbaum, David & Mizrach, Bruce, 2008. "Estimating the intensity of choice in a dynamic mutual fund allocation decision," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3866-3876, December.
    4. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    5. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    6. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    7. Jiri Kukacka & Jozef Barunik, 2016. "Simulated ML Estimation of Financial Agent-Based Models," Working Papers IES 2016/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2016.
    8. Marco Del Negro & Frank Schorfheide, 2006. "How good is what you've got? DSGE-VAR as a toolkit for evaluating DSGE models," Economic Review, Federal Reserve Bank of Atlanta, vol. 91(Q 2), pages 21-37.
    9. Canova, Fabio & Sala, Luca, 2009. "Back to square one: Identification issues in DSGE models," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 431-449, May.
    10. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    11. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    12. Bernd-O. Heine & Matthias Meyer & Oliver Strangfeld, 2005. "Stylised Facts and the Contribution of Simulation to the Economic Analysis of Budgeting," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-4.
    13. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    14. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    15. Sylvain Barde, 2017. "A Practical, Accurate, Information Criterion for Nth Order Markov Processes," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 281-324, August.
    16. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    17. Sylvain Barde & Sander Van Der Hoog, 2017. "An empirical validation protocol for large-scale agent-based models," Sciences Po publications 17/12, Sciences Po.
    18. Recchioni, Maria Cristina & Tedeschi, Gabriele & Gallegati, Mauro, 2015. "A calibration procedure for analyzing stock price dynamics in an agent-based framework," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 1-25.
    19. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    20. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    21. Leonardo Bargigli & Luca Riccetti & Alberto Russo & Mauro Gallegati, 2020. "Network calibration and metamodeling of a financial accelerator agent based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(2), pages 413-440, April.
    22. Fagiolo, Giorgio & Dosi, Giovanni, 2003. "Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents," Structural Change and Economic Dynamics, Elsevier, vol. 14(3), pages 237-273, September.
    23. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    24. Dosi, G. & Pereira, M.C. & Roventini, A. & Virgillito, M.E., 2017. "When more flexibility yields more fragility: The microfoundations of Keynesian aggregate unemployment," Journal of Economic Dynamics and Control, Elsevier, vol. 81(C), pages 162-186.
    25. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea, 2013. "Income distribution, credit and fiscal policies in an agent-based Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1598-1625.
    26. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    27. Mattia Guerini, 2013. "Is the Friedman Rule Stabilizing? Some Unpleasant Results in a Heterogeneous Expectations Framework," DISCE - Working Papers del Dipartimento di Economia e Finanza def003, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    28. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    29. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    30. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    31. Lars Peter Hansen & James J. Heckman, 1996. "The Empirical Foundations of Calibration," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 87-104, Winter.
    32. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    33. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    34. Giorgio Fagiolo & Andrea Roventini, 2012. "Macroeconomic Policy in DSGE and Agent-Based Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 67-116.
    35. Isabelle Salle & Murat Yıldızoğlu, 2014. "Efficient Sampling and Meta-Modeling for Computational Economic Models," Computational Economics, Springer;Society for Computational Economics, vol. 44(4), pages 507-536, December.
    36. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    37. Paolo Pellizzari & Arianna Forno, 2007. "A comparison of different trading protocols in an agent-based market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(1), pages 27-43, June.
    38. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2006. "Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 38-42.
    39. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    40. Herbert A. Simon, 1991. "Bounded Rationality and Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 125-134, February.
    41. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    42. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2, 00.
    43. G Dosi & M C Pereira & A Roventini & M E Virgillito, 2018. "Causes and consequences of hysteresis: aggregate demand, productivity, and employment," Industrial and Corporate Change, Oxford University Press, vol. 27(6), pages 1015-1044.
    44. repec:ctc:serie1:def3 is not listed on IDEAS
    45. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    46. Bianchi, Carlo & Cirillo, Pasquale & Gallegati, Mauro & Vagliasindi, Pietro A., 2008. "Validation in agent-based models: An investigation on the CATS model," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 947-964, September.
    47. Carlo Bianchi & Pasquale Cirillo & Mauro Gallegati & Pietro Vagliasindi, 2007. "Validating and Calibrating Agent-Based Models: A Case Study," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 245-264, October.
    48. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    49. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    50. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    51. Robert Marks, 2007. "Validating Simulation Models: A General Framework and Four Applied Examples," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 265-290, October.
    52. Brock, W A, 1999. "Scaling in Economics: A Reader's Guide," Industrial and Corporate Change, Oxford University Press, vol. 8(3), pages 409-446, September.
    53. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    54. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    55. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    56. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    57. Jan C. Thiele & Winfried Kurth & Volker Grimm, 2014. "Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-11.
    58. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    59. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    60. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    61. Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Tania Treibich, 2017. "Micro and macro policies in the Keynes+Schumpeter evolutionary models," Journal of Evolutionary Economics, Springer, vol. 27(1), pages 63-90, January.
    62. Guerini, Mattia & Napoletano, Mauro & Roventini, Andrea, 2018. "No man is an Island: The impact of heterogeneity and local interactions on macroeconomic dynamics," Economic Modelling, Elsevier, vol. 68(C), pages 82-95.
    63. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    64. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    65. repec:ctc:serie1:def0003 is not listed on IDEAS
    66. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    67. Lane, David A, 1993. "Artificial Worlds and Economics, Part II," Journal of Evolutionary Economics, Springer, vol. 3(3), pages 177-197, August.
    68. Paccagnini, Alessia, 2010. "DSGE Model Validation in a Bayesian Framework: an Assessment," MPRA Paper 24509, University Library of Munich, Germany.
    69. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea & Treibich, Tania, 2015. "Fiscal and monetary policies in complex evolving economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 166-189.
    70. de Jong, Eelke & Verschoor, Willem F.C. & Zwinkels, Remco C.J., 2010. "Heterogeneity of agents and exchange rate dynamics: Evidence from the EMS," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1652-1669, December.
    71. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2016. "The Effects of Labour Market Reforms upon Unemployment and Income Inequalities: an Agent Based Model," LEM Papers Series 2016/27, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    72. Assenza, Tiziana & Delli Gatti, Domenico & Grazzini, Jakob, 2015. "Emergent dynamics of a macroeconomic agent based model with capital and credit," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 5-28.
    73. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    74. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 804-815, December.
    75. Turrell, Arthur, 2016. "Agent-based models: understanding the economy from the bottom up," Bank of England Quarterly Bulletin, Bank of England, vol. 56(4), pages 173-188.
    76. Lane, David A, 1993. "Artificial Worlds and Economics, Part I," Journal of Evolutionary Economics, Springer, vol. 3(2), pages 89-107, May.
    77. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    78. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press, vol. 8(1), pages 3-40, March.
    79. Anufriev, Mikhail & Bao, Te & Tuinstra, Jan, 2016. "Microfoundations for switching behavior in heterogeneous agent models: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 74-99.
    80. Tommaso Ciarli, 2012. "Structural Interactions and Long Run Growth. An Application of Experimental Design to Agent Based Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 295-345.
    81. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    82. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    83. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, September.
    84. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    85. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    86. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02375423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.