IDEAS home Printed from https://ideas.repec.org/p/ukc/ukcedp/1908.html

Macroeconomic simulation comparison with a multivariate extension of the Markov Information Criterion

Author

Listed:
  • Sylvain Barde

Abstract

Comparison of macroeconomic simulation models, particularly agent-based models (ABMs), with more traditional approaches such as VAR and DSGE models has long been identified as an important yet problematic issue in the literature. This is due to the fact that many such simulations have been developed following the great recession with a clear aim to inform policy, yet the methodological tools required for validating these models on empirical data are still in their infancy. The paper aims to address this issue by developing and testing a comparison framework for macroeconomic simulation models based on a multivariate extension of the Markov Information Criterion (MIC) originally developed in Barde (2017). The MIC is designed to measure the informational distance between a set of models and some empirical data by mapping the simulated data to the markov transition matrix of the underlying data generating process, and is proven to perform optimally (i.e. the measurement is unbiased in expectation) for all models reducible to a markov process. As a result, not only can the MIC provide an accurate measure of distance solely on the basis of simulated data, but it can do it for a very wide class of data generating processes. The paper first presents the strategies adopted to address the computational challenges that arise from extending the methodology to multivariate settings and validates the extension on VAR and DGSE models. The paper then carries out a comparison of the benchmark ABM of Caiani et al. (2016) and the DGSE framework of Smets and Wouters (2007), which to our knowledge, is the first direct comparison between a macroeconomic ABM and a DGSE model.

Suggested Citation

  • Sylvain Barde, 2019. "Macroeconomic simulation comparison with a multivariate extension of the Markov Information Criterion," Studies in Economics 1908, School of Economics, University of Kent.
  • Handle: RePEc:ukc:ukcedp:1908
    as

    Download full text from publisher

    File URL: https://www.kent.ac.uk/economics/repec/1908.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Domenico, Jacopo Di & Catalano, Michele & Riccetti, Luca, 2025. "Scaling and forecasting in a data-driven agent-based model: Applications to the Italian macroeconomy," Economic Modelling, Elsevier, vol. 147(C).
    3. Alperen Bektas & Valentino Piana & René Schumann, 2021. "A meso-level empirical validation approach for agent-based computational economic models drawing on micro-data: a use case with a mobility mode-choice model," SN Business & Economics, Springer, vol. 1(6), pages 1-25, June.
    4. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    5. Chetan Dave & Marco M. Sorge, 2025. "Fat‐tailed DSGE models: A survey and new results," Journal of Economic Surveys, Wiley Blackwell, vol. 39(1), pages 146-171, February.
    6. Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    7. Martinoli, Mario & Moneta, Alessio & Pallante, Gianluca, 2024. "Calibration and validation of macroeconomic simulation models by statistical causal search," Journal of Economic Behavior & Organization, Elsevier, vol. 228(C).
    8. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    9. Dave, Chetan & Sorge, Marco M., 2021. "Equilibrium indeterminacy and sunspot tales," European Economic Review, Elsevier, vol. 140(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ukc:ukcedp:1908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr Anirban Mitra (email available below). General contact details of provider: https://www.kent.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.