IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v196y2024ics0167947324000562.html
   My bibliography  Save this article

Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates

Author

Listed:
  • Barde, Sylvain

Abstract

Large scale, computationally expensive simulation models pose a particular challenge when it comes to estimating their parameters from empirical data. Most simulation models do not possess closed-form expressions for their likelihood function, requiring the use of simulation-based inference, such as simulated method of moments, indirect inference, likelihood-free inference or approximate Bayesian computation. However, given the high computational requirements of large-scale models, it is often difficult to run these estimation methods, as they require more simulated runs that can feasibly be carried out. The aim is to address the problem by providing a full Bayesian estimation framework where the true but intractable likelihood function of the simulation model is replaced by one generated by a surrogate model trained on the limited simulated data. This is provided by a Linear Model of Coregionalization, where each latent variable is a sparse variational Gaussian process, chosen for its desirable convergence and consistency properties. The effectiveness of the approach is tested using both a simulated Bayesian computing analysis on a known data generating process, and an empirical application in which the free parameters of a computationally demanding agent-based model are estimated on US macroeconomic data.

Suggested Citation

  • Barde, Sylvain, 2024. "Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000562
    DOI: 10.1016/j.csda.2024.107972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000562
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:196:y:2024:i:c:s0167947324000562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.