IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach

  • Smets, Frank
  • Wouters, Rafael

Using a Bayesian likelihood approach, we estimate a dynamic stochastic general equilibrium model for the US economy using seven macro-economic time series. The model incorporates many types of real and nominal frictions and seven types of structural shocks. We show that this model is able to compete with Bayesian Vector Autoregression models in out-of-sample prediction. We investigate the relative empirical importance of the various frictions. Finally, using the estimated model we address a number of key issues in business cycle analysis: What are the sources of business cycle fluctuations? Can the model explain the cross-correlation between output and inflation? What are the effects of productivity on hours worked? What are the sources of the “Great Moderation”?

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=6112
Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 6112.

as
in new window

Length:
Date of creation: Feb 2007
Date of revision:
Handle: RePEc:cpr:ceprdp:6112
Contact details of provider: Postal:
Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.

Phone: 44 - 20 - 7183 8801
Fax: 44 - 20 - 7183 8820

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Orphanides, Athanasios, 2003. "Historical monetary policy analysis and the Taylor rule," Journal of Monetary Economics, Elsevier, vol. 50(5), pages 983-1022, July.
  2. Robert G. King & Sergio T. Rebelo, 2000. "Resuscitating Real Business Cycles," RCER Working Papers 467, University of Rochester - Center for Economic Research (RCER).
  3. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
  4. Jean Boivin & Marc P. Giannoni, 2003. "Has Monetary Policy Become More Effective?," NBER Working Papers 9459, National Bureau of Economic Research, Inc.
  5. Smets, Frank & Wouters, Raf, 2004. "Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE approach," Working Paper Series 0391, European Central Bank.
  6. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
  7. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
  8. Julio Rotemberg & Michael Woodford, 1997. "An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 297-361 National Bureau of Economic Research, Inc.
  9. Lawrence J. Christiano & Roberto Motto & Massimo Rostagno, 2003. "The Great Depression and the Friedman-Schwartz hypothesis," Proceedings, Federal Reserve Bank of Cleveland, pages 1119-1215.
  10. Kimball, Miles S, 1995. "The Quantitative Analytics of the Basic Neomonetarist Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(4), pages 1241-77, November.
  11. Stefano Neri & Luca Dedola, 2004. "Are technology shocks contractionary? A Bayesian VAR analysis with priors on impulses responses," 2004 Meeting Papers 406, Society for Economic Dynamics.
  12. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2001. "Nominal rigidities and the dynamic effects of a shock to monetary policy," Working Paper Series WP-01-08, Federal Reserve Bank of Chicago.
  13. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
  14. Marvin Goodfriend & Robert King, 1997. "The New Neoclassical Synthesis and the Role of Monetary Policy," NBER Chapters, in: NBER Macroeconomics Annual 1997, Volume 12, pages 231-296 National Bureau of Economic Research, Inc.
  15. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
  16. Christopher A. Sims & Tao Zha, 2005. "Were There Regime Switches in U.S. Monetary Policy?," Working Papers 92, Princeton University, Department of Economics, Center for Economic Policy Studies..
  17. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
  18. Yongsung Chang & Joao Gomes & Frank Schorfheide, 2002. "Learning by Doing as a Propagation Mechanism," Macroeconomics 0204002, EconWPA.
  19. Mark Bils & Peter J. Klenow, 2002. "Some Evidence on the Importance of Sticky Prices," NBER Working Papers 9069, National Bureau of Economic Research, Inc.
  20. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, June.
  21. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
  22. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393 Elsevier.
  23. Robert B. Litterman, 1984. "Forecasting and policy analysis with Bayesian vector autoregression models," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  24. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
  25. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 1997. "Monetary policy shocks: what have we learned and to what end?," Working Paper Series, Macroeconomic Issues WP-97-18, Federal Reserve Bank of Chicago.
  26. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  27. G. Peersman & R. Straub, 2005. "Technology Shocks and Robust Sign Restrictions in a Euro Area SVAR," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/288, Ghent University, Faculty of Economics and Business Administration.
  28. Eichenbaum, Martin & Fisher, Jonas D.M., 2007. "Estimating the frequency of price re-optimization in Calvo-style models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2032-2047, October.
  29. Frank Smets & Raf Wouters, 2002. "An estimated dynamic stochastic general equilibrium model of the euro area," Working Paper Research 35, National Bank of Belgium.
  30. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
  31. Neville Francis & Valerie A. Ramey, 2002. "Is the Technology-Driven Real Business Cycle Hypothesis Dead?," NBER Working Papers 8726, National Bureau of Economic Research, Inc.
  32. Dedola, Luca & Neri, Stefano, 2006. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Working Paper Series 0705, European Central Bank.
  33. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is featured on the following reading lists or Wikipedia pages:

  1. Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach (AER 2007) in ReplicationWiki

When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:6112. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.