IDEAS home Printed from https://ideas.repec.org/p/sce/scecf4/89.html
   My bibliography  Save this paper

Empirical Calibration of Simulation Models

Author

Listed:
  • Thomas Brenner
  • Claudia Werker

Abstract

Simulations have become a common tool to study the implications of theoretical models. In addition, computational approaches are frequently used in statistics to adapt models to reality. We aim to merge these approaches. To obtain robust results with significant validity from simulations, empirical data have to be extensively used. We first discuss how inference in economic contexts can be made and then describe our proposed method. It makes extensive use of empirical knowledge for the development of a simulation model whose implications are then examined in the light of empirical data in a Bayesian-like approach. This allows all systems that can be described by the simulation model to be classified into subsets of models. This makes it possible to establish different subsets of models that describe certain realities and to study the characteristics of and causal relationships in these subsets

Suggested Citation

  • Thomas Brenner & Claudia Werker, 2004. "Empirical Calibration of Simulation Models," Computing in Economics and Finance 2004 89, Society for Computational Economics.
  • Handle: RePEc:sce:scecf4:89
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Franco Malerba & Luigi Orsenigo, 2002. "Innovation and market structure in the dynamics of the pharmaceutical industry and biotechnology: towards a history-friendly model," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(4), pages 667-703, August.
    2. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
    3. Johann Peter Murmann & Thomas Brenner, 2003. "The Use of Simulations in Developing Robust Knowledge about Causal Processes: Methodological Considerations and an Application to Industrial Evolution," Computing in Economics and Finance 2003 66, Society for Computational Economics.
    4. T. Brenner & P. Murmann, 2003. "The Use of Simulations in Developing," Papers on Economics and Evolution 2003-03, Philipps University Marburg, Department of Geography.
    5. Paul Downward & John H. Finch & John Ramsay, 2002. "Critical realism, empirical methods and inference: a critical discussion," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 26(4), pages 481-500, July.
    6. Schwerin, Joachim & Werker, Claudia, 2003. "Learning innovation policy based on historical experience," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 385-404, December.
    7. Machlup, Fritz, 1978. "Methodology of Economics and Other Social Sciences," Elsevier Monographs, Elsevier, edition 1, number 9780124645509 edited by Shell, Karl.
    8. Dominique Foray & Robin Cowan, 2002. "Evolutionary economics and the counterfactual threat: on the nature and role of counterfactual history as an empirical tool in economics," Journal of Evolutionary Economics, Springer, vol. 12(5), pages 539-562.
    9. Hariolf Grupp, 1998. "Foundations of the Economics of Innovation," Books, Edward Elgar Publishing, number 1390.
    10. Malerba, Franco, et al, 1999. "'History-Friendly' Models of Industry Evolution: The Computer Industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 8(1), pages 3-40, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    3. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    4. Gianluca Capone & Franco Malerba & Richard R. Nelson & Luigi Orsenigo & Sidney G. Winter, 2019. "History friendly models: retrospective and future perspectives," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 1-23, March.
    5. Chao Bi & Jingjing Zeng & Wanli Zhang & Yonglin Wen, 2020. "Modelling the Coevolution of the Fuel Ethanol Industry, Technology System, and Market System in China: A History-Friendly Model," Energies, MDPI, vol. 13(5), pages 1-26, February.
    6. Thomas Brenner & Claudia Werker, 2006. "A Practical Guide to Inference in Simulation Models," Papers on Economics and Evolution 2006-02, Philipps University Marburg, Department of Geography.
    7. M. Mouchart & R. Orsi & G. Wunsch, 2020. "Causality in Econometric Modeling. From Theory to Structural Causal Modeling," Working Papers wp1143, Dipartimento Scienze Economiche, Universita' di Bologna.
    8. Thomas Brenner & Claudia Werker, 2009. "Policy Advice Derived from Simulation Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-2.
    9. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    10. Herbert Dawid & Reinhold Decker & Thomas Hermann & Hermann Jahnke & Wilhelm Klat & Rolf König & Christian Stummer, 2017. "Management science in the era of smart consumer products: challenges and research perspectives," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 203-230, March.
    11. Christian Garavaglia & Franco Malerba & Luigi Orsenigo & Michele Pezzoni, 2013. "Technological Regimes and Demand Structure in the Evolution of the Pharmaceutical Industry," Economic Complexity and Evolution, in: Andreas Pyka & Esben Sloth Andersen (ed.), Long Term Economic Development, edition 127, pages 61-94, Springer.
    12. Nicholas S. Argyres & Alfredo De Massis & Nicolai J. Foss & Federico Frattini & Geoffrey Jones & Brian S. Silverman, 2020. "History‐informed strategy research: The promise of history and historical research methods in advancing strategy scholarship," Strategic Management Journal, Wiley Blackwell, vol. 41(3), pages 343-368, March.
    13. Thierry Burger-Helmchen, 2013. "Choix stratégique dans l’industrie des platesformes de loisirs électroniques : une application des modèles ‘History-friendly’," Working Papers of BETA 2013-02, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    14. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, September.
    15. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    16. Garavaglia Christian & Malerba Franco & Orsenigo Luigi & Pezzoni Michele, 2014. "Innovation and Market Structure in Pharmaceuticals: An Econometric Analysis on Simulated Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 274-298, April.
    17. Dosi, Giovanni & Palagi, Elisa & Roventini, Andrea & Russo, Emanuele, 2023. "Do patents really foster innovation in the pharmaceutical sector? Results from an evolutionary, agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 564-589.
    18. Gilsing, V. & Nooteboom, B., 2004. "Density and strength of ties in innovation networks: an analysis of multimedia and biotechnology," Working Papers 04.16, Eindhoven Center for Innovation Studies.
    19. Garcia, Rosanna & Rummel, Paul & Hauser, John, 2007. "Validating agent-based marketing models through conjoint analysis," Journal of Business Research, Elsevier, vol. 60(8), pages 848-857, August.
    20. Franco Malerba, 2006. "Innovation, Industrial Dynamics and Industry Evolution: Progress and the Research Agendas," Revue de l'OFCE, Presses de Sciences-Po, vol. 97(5), pages 21-46.

    More about this item

    Keywords

    Simulations; Empirics; Methodology;
    All these keywords.

    JEL classification:

    • B40 - Schools of Economic Thought and Methodology - - Economic Methodology - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf4:89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.