IDEAS home Printed from https://ideas.repec.org/a/spr/jeicoo/v8y2013i2p277-293.html
   My bibliography  Save this article

On the problem of calibrating an agent based model for financial markets

Author

Listed:
  • Annalisa Fabretti

Abstract

Agent based models are very widely used in different disciplines. In financial markets, they can be used to explain well known features called stylised facts and fit statistical properties of data. For this reason, they can model price movements better than standard models using gaussianity. Calibration and validation are essential issues in agent-based modeling. However, calibrating such models is not yet sufficiently considered in the literature. In this paper, a Nelder–Mead simplex algorithm coupled with threshold accepting algorithm (Gilli and Winker in Comput Stat Data Anal 42:299–312, 2003 ) and a genetic algorithm have been implemented to calibrate the model presented by Farmer and Joshi (J Econ Behav Org 49:149–171, 2002 ) and the outcomes have been compared and discussed. The data used are closing prices of S&P500 Composite index and a particular attention has been devoted to the choice of the objective function. Copyright Springer-Verlag 2013

Suggested Citation

  • Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
  • Handle: RePEc:spr:jeicoo:v:8:y:2013:i:2:p:277-293
    DOI: 10.1007/s11403-012-0096-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11403-012-0096-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11403-012-0096-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    2. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    3. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    4. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    5. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    6. Leombruni, Roberto & Richiardi, Matteo, 2005. "Why are economists sceptical about agent-based simulations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 103-109.
    7. Paolo Pellizzari & Arianna Forno, 2007. "A comparison of different trading protocols in an agent-based market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(1), pages 27-43, June.
    8. Philippe Mathieu & Bruno Beaufils & Olivier Brandouy, 2005. "Artificial Economics," Post-Print hal-00826572, HAL.
    9. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    10. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    11. Raberto, Marco & Teglio, Andrea & Cincotti, Silvano, 2012. "Debt, deleveraging and business cycles: An agent-based perspective," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-49.
    12. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    13. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    14. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    15. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    16. Pasquale Cirillo & Mauro Gallegati, 2012. "The Empirical Validation of an Agent-based Model," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 38(4), pages 525-547.
    17. Bianchi, Carlo & Cirillo, Pasquale & Gallegati, Mauro & Vagliasindi, Pietro A., 2008. "Validation in agent-based models: An investigation on the CATS model," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 947-964, September.
    18. Carlo Bianchi & Pasquale Cirillo & Mauro Gallegati & Pietro Vagliasindi, 2007. "Validating and Calibrating Agent-Based Models: A Case Study," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 245-264, October.
    19. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    20. Delli Gatti, Domenico & Gallegati, Mauro & Giulioni, Gianfranco & Palestrini, Antonio, 2003. "Financial fragility, patterns of firms' entry and exit and aggregate dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 51(1), pages 79-97, May.
    21. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lamperti, 2016. "Empirical Validation of Simulated Models through the GSL-div: an Illustrative Application," LEM Papers Series 2016/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Jakob Grazzini, 2011. "Consistent Estimation of Agent Based Models," LABORatorio R. Revelli Working Papers Series 110, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Grazzini, Jakob & Richiardi, Matteo, 2015. "Estimation of ergodic agent-based models by simulated minimum distance," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
    5. Jakob Grazzini & Matteo G. Richiardi, 2013. "Consistent Estimation of Agent-Based Models by Simulated Minimum Distance," LABORatorio R. Revelli Working Papers Series 130, LABORatorio R. Revelli, Centre for Employment Studies.
    6. Francesco Lamperti, 2018. "Empirical validation of simulated models through the GSL-div: an illustrative application," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 143-171, April.
    7. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    8. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    9. Donovan Platt, 2019. "A Comparison of Economic Agent-Based Model Calibration Methods," Papers 1902.05938, arXiv.org.
    10. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, March.
    11. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    12. Bàrbara Llacay & Gilbert Peffer, 2018. "Using realistic trading strategies in an agent-based stock market model," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 308-350, September.
    13. Lamperti, Francesco, 2018. "An information theoretic criterion for empirical validation of simulation models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 83-106.
    14. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    16. Schmitt, Noemi & Westerhoff, Frank, 2014. "Speculative behavior and the dynamics of interacting stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 262-288.
    17. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    18. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    19. Barde, Sylvain, 2016. "Direct comparison of agent-based models of herding in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 73(C), pages 329-353.
    20. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.

    More about this item

    Keywords

    Agent based model; Artificial markets; Calibration; Genetic algorithm; C13; C52; G10;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jeicoo:v:8:y:2013:i:2:p:277-293. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.