IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i3p1588-1595.html
   My bibliography  Save this article

Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics

Author

Listed:
  • Rahimiyan, Morteza
  • Rajabi Mashhadi, Habib

Abstract

Choosing a desired policy for divestiture of dominant firms' generation assets has been a challenging task and open question for regulatory authority. To deal with this problem, in this paper, an analytical method and agent-based computational economics (ACE) approach are used for ex-ante analysis of divestiture policy in reducing market power. The analytical method is applied to solve a designed concentration boundary problem, even for situations where the cost data of generators are unknown. The concentration boundary problem is the problem of minimizing or maximizing market concentration subject to operation constraints of the electricity market. It is proved here that the market concentration corresponding to operation condition is certainly viable in an interval calculated by the analytical method. For situations where the cost function of generators is available, the ACE is used to model the electricity market. In ACE, each power producer's profit-maximization problem is solved by the computational approach of Q-learning. The power producer using the Q-learning method learns from past experiences to implicitly identify the market power, and find desired response in competing with the rivals. Both methods are applied in a multi-area power system and effects of different divestiture policies on market behavior are analyzed.

Suggested Citation

  • Rahimiyan, Morteza & Rajabi Mashhadi, Habib, 2010. "Evaluating the efficiency of divestiture policy in promoting competitiveness using an analytical method and agent-based computational economics," Energy Policy, Elsevier, vol. 38(3), pages 1588-1595, March.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:3:p:1588-1595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00892-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    2. Day, Christopher J & Bunn, Derek W, 2001. "Divestiture of Generation Assets in the Electricity Pool of England and Wales: A Computational Approach to Analyzing Market Power," Journal of Regulatory Economics, Springer, vol. 19(2), pages 123-141, March.
    3. Wolak, Frank A., 2005. "Lessons from international experience with electricity market monitoring," Policy Research Working Paper Series 3692, The World Bank.
    4. James Nicolaisen & Valentin Petrov & Leigh Tesfatsion, 2000. "Market Power and Efficiency in a Computational Electricity Market with Discriminatory Double-Auction Pricing," Computational Economics 0004005, University Library of Munich, Germany.
    5. Severin Borenstein & James Bushnell, 1999. "An Empirical Analysis of the Potential for Market Power in California’s Electricity Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 47(3), pages 285-323, September.
    6. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    7. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    8. Sun, Junjie & Tesfatsion, Leigh S., 2007. "An Agent-Based Computational Laboratory for Wholesale Power Market Design," Staff General Research Papers Archive 12776, Iowa State University, Department of Economics.
    9. Bunn, Derek W. & Martoccia, Maria, 2005. "Unilateral and collusive market power in the electricity pool of England and Wales," Energy Economics, Elsevier, vol. 27(2), pages 305-315, March.
    10. Green, Richard J, 1996. "Increasing Competition in the British Electricity Spot Market," Journal of Industrial Economics, Wiley Blackwell, vol. 44(2), pages 205-216, June.
    11. Derek W. Bunn and Fernando Oliveira, 2001. "An Application of Agent-based Simulation to the New Electricity Trading Arrangements of England and Wales," Computing in Economics and Finance 2001 93, Society for Computational Economics.
    12. Domanico, Fabio, 2007. "Concentration in the European electricity industry: The internal market as solution?," Energy Policy, Elsevier, vol. 35(10), pages 5064-5076, October.
    13. Zarnikau, Jay, 2005. "A review of efforts to restructure Texas' electricity market," Energy Policy, Elsevier, vol. 33(1), pages 15-25, January.
    14. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    15. Bower, John & Bunn, Derek W. & Wattendrup, Claus, 2001. "A model-based analysis of strategic consolidation in the German electricity industry," Energy Policy, Elsevier, vol. 29(12), pages 987-1005, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weigt, H. & Willems, Bert, 2011. "The Effect of Divestitures in the German Electricity Market," Other publications TiSEM 7bbea5b0-7489-416f-8767-d, Tilburg University, School of Economics and Management.
    2. Atallah, Shady S. & Gomez, Miguel & Conrad, Jon & Nyrop, Jan, 2013. "An Agent-Based Computational Bioeconomic Model of Plant Disease Diffusion and Control: Grapevine Leafroll Disease," Working Papers 180085, Cornell University, Department of Applied Economics and Management.
    3. Ibrahim Ari & Muammer Koc, 2019. "Sustainable Financing for Sustainable Development: Agent-Based Modeling of Alternative Financing Models for Clean Energy Investments," Sustainability, MDPI, vol. 11(7), pages 1-34, April.
    4. Min-Ren Yan, 2015. "Project-Based Market Competition and Policy Implications for Sustainable Developments in Building and Construction Sectors," Sustainability, MDPI, vol. 7(11), pages 1-26, November.
    5. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    3. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    4. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo & Möst, Dominik, 2007. "Agent-based simulation of electricity markets: a literature review," Working Papers "Sustainability and Innovation" S5/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    5. Lin-Ju Chen & Lei Zhu & Ying Fan & Sheng-Hua Cai, 2013. "Long-Term Impacts of Carbon Tax and Feed-in Tariff Policies on China's Generating Portfolio and Carbon Emissions: A Multi-Agent-Based Analysis," Energy & Environment, , vol. 24(7-8), pages 1271-1293, December.
    6. E. J. Anderson & T. D. H. Cau, 2009. "Modeling Implicit Collusion Using Coevolution," Operations Research, INFORMS, vol. 57(2), pages 439-455, April.
    7. Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Fernando S. Oliveira & Derek W. Bunn & London Business School, 2006. "Modeling the strategic trading of electricity assets," Computing in Economics and Finance 2006 235, Society for Computational Economics.
    9. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    10. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    11. Eric Guerci & Stefano Ivaldi & Silvano Cincotti, 2008. "Learning Agents in an Artificial Power Exchange: Tacit Collusion, Market Power and Efficiency of Two Double-auction Mechanisms," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 73-98, September.
    12. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    13. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    14. Ketter, Wolfgang & Collins, John & Reddy, Prashant, 2013. "Power TAC: A competitive economic simulation of the smart grid," Energy Economics, Elsevier, vol. 39(C), pages 262-270.
    15. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.
    16. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    17. Bunn, Derek W. & Oliveira, Fernando S., 2007. "Agent-based analysis of technological diversification and specialization in electricity markets," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1265-1278, September.
    18. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    19. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
    20. Rubin, Ofir D. & Babcock, Bruce A., 2011. "A novel approach for modeling deregulated electricity markets," Energy Policy, Elsevier, vol. 39(5), pages 2711-2721, May.
    21. Varawala, Lamia & Hesamzadeh, Mohammad Reza & Dán, György & Bunn, Derek & Rosellón, Juan, 2023. "A pricing mechanism to jointly mitigate market power and environmental externalities in electricity markets," Energy Economics, Elsevier, vol. 121(C).
    22. Dawid Herbert & Gemkow Simon & Harting Philipp & Kabus Kordian & Wersching Klaus & Neugart Michael, 2008. "Skills, Innovation, and Growth: An Agent-Based Policy Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 251-275, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:3:p:1588-1595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.