IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1305.html
   My bibliography  Save this paper

Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs

Author

Listed:
  • Anna Kowalska-Pyzalska
  • Katarzyna Maciejowska
  • Katarzyna Sznajd-Weron
  • Rafal Weron

Abstract

Using an agent-based modeling approach we show how personal attributes, like conformity or indifference, impact the opinions of individual electricity consumers regarding switching to innovative dynamic tariff programs. We also examine the influence of advertising, discomfort of usage and the expectations of financial savings on opinion dynamics. Our main finding is that currently the adoption of dynamic electricity tariffs is virtually impossible due to the high level of indifference in today's societies. However, if in the future the indifference level is reduced, e.g., through educational programs that would make the customers more engaged in the topic, factors like tariff pricing schemes and intensity of advertising will became the focal point.

Suggested Citation

  • Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc1305
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_13_05.pdf
    File Function: Original version, 2013
    Download Restriction: no

    References listed on IDEAS

    as
    1. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    2. Bunn, Derek W. & Martoccia, Maria, 2005. "Unilateral and collusive market power in the electricity pool of England and Wales," Energy Economics, Elsevier, vol. 27(2), pages 305-315, March.
    3. repec:wsi:ijmpcx:v:11:y:2000:i:06:n:s0129183100000936 is not listed on IDEAS
    4. Thorsnes, Paul & Williams, John & Lawson, Rob, 2012. "Consumer responses to time varying prices for electricity," Energy Policy, Elsevier, vol. 49(C), pages 552-561.
    5. Sznajd-Weron, Katarzyna & Weron, Rafal & Wloszczowska, Maja, 2008. "Outflow Dynamics in Modeling Oligopoly Markets: The Case of the Mobile Telecommunications Market in Poland," MPRA Paper 10422, University Library of Munich, Germany.
    6. Jackson, Jerry, 2010. "Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models," Energy Policy, Elsevier, vol. 38(7), pages 3771-3780, July.
    7. Eric Guerci & Mohammad Ali Rastegar & Silvano Cincotti, 2010. "Agent-based modeling and simulation of competitive wholesale electricity markets," Post-Print halshs-00871063, HAL.
    8. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    9. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    10. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    11. Sznajd-Weron, K. & Weron, R., 2003. "How effective is advertising in duopoly markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 437-444.
    12. Zhang, T. & Nuttall, W.J., 2008. "Evaluating Government’s Policies on Promoting Smart Metering in Retail Electricity Markets via Agent Based Simulation," Cambridge Working Papers in Economics 0842, Faculty of Economics, University of Cambridge.
    13. Isamu Matsukawa, 2004. "The Effects of Information on Residential Demand for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-18.
    14. Diaz-Rainey, Ivan & Tzavara, Dionisia, 2012. "Financing the decarbonized energy system through green electricity tariffs: A diffusion model of an induced consumer environmental market," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1693-1704.
    15. Weyant, John P., 2011. "Accelerating the development and diffusion of new energy technologies: Beyond the "valley of death"," Energy Economics, Elsevier, vol. 33(4), pages 674-682, July.
    16. repec:wsi:acsxxx:v:17:y:2014:i:01:n:s0219525914500040 is not listed on IDEAS
    17. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    18. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    19. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    20. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    21. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    22. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    23. Silvano Cincotti & Laura Gardini & Thomas Lux, 2008. "New Advances in Financial Economics: Heterogeneity and Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 1-2, September.
    24. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    2. McCoy, Daire & Lyons, Sean, 2014. "The diffusion of electric vehicles: An agent-based microsimulation," MPRA Paper 54560, University Library of Munich, Germany.

    More about this item

    Keywords

    Dynamic pricing; Time-of-use tariff; Demand response; Diffusion of innovations; Agent-based model; Spinson;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rafal Weron). General contact details of provider: http://edirc.repec.org/data/hspwrpl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.