IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/0842.html
   My bibliography  Save this paper

Evaluating Government’s Policies on Promoting Smart Metering in Retail Electricity Markets via Agent Based Simulation

Author

Listed:
  • Zhang, T.
  • Nuttall, W.J.

Abstract

In this paper, we develop an agent-based model of a market game in order to evaluate the effectiveness of the UK government’s 2008-2010 policy on promoting smart metering. We also consider possible supplementary strategies. With the model, we test the effectiveness of four possible strategy options and suggest their policy implications. The context of the paper is a practical application of agent-based simulation to the retail electricity market in Britain. The contribution of the research are both in the areas of policy making for electricity markets and in the methodological use of agent-based simulation for studying social complex systems involving human behaviour.

Suggested Citation

  • Zhang, T. & Nuttall, W.J., 2008. "Evaluating Government’s Policies on Promoting Smart Metering in Retail Electricity Markets via Agent Based Simulation," Cambridge Working Papers in Economics 0842, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0842
    as

    Download full text from publisher

    File URL: http://www.eprg.group.cam.ac.uk/category/publications/
    File Function: Working Paper Version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zhang, Tao & Zhang, David, 2007. "Agent-based simulation of consumer purchase decision-making and the decoy effect," Journal of Business Research, Elsevier, vol. 60(8), pages 912-922, August.
    2. Hall, Bronwyn H. & Khan, Beethika, 2003. "Adoption of New Technology," Department of Economics, Working Paper Series qt3wg4p528, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    3. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    4. Zhang, T. & Nuttall, W.J., 2007. "An Agent Based Simulation Of Smart Metering Technology Adoption," Cambridge Working Papers in Economics 0760, Faculty of Economics, University of Cambridge.
    5. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    6. Sugden, Robert, 1991. "Rational Choice: A Survey of Contributions from Economics and Philosophy," Economic Journal, Royal Economic Society, vol. 101(407), pages 751-785, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    2. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    4. Anna Kowalska-Pyzalska, 2015. "Social acceptance of green energy and dynamic electricity tariffs - a short review," HSC Research Reports HSC/15/07, Hugo Steinhaus Center, Wroclaw University of Technology.
    5. repec:wsi:ijitmx:v:10:y:2013:i:05:n:s0219877013400208 is not listed on IDEAS
    6. Tomasz Weron & Anna Kowalska-Pyzalska & Rafal Weron, 2017. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," HSC Research Reports HSC/17/04, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Haghnevis, Moeed & Askin, Ronald G. & Armbruster, Dieter, 2016. "An agent-based modeling optimization approach for understanding behavior of engineered complex adaptive systems," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 67-87.
    8. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    9. Stagnaro, Carlo & Amenta, Carlo & Di Croce, Giulia & Lavecchia, Luciano, 2017. "La liberalizzazione del mercato elettrico - Una proposta per superare la maggior tutela
      [The liberalization of Italy's retail electricity market: a policy proposal]
      ," MPRA Paper 81768, University Library of Munich, Germany.
    10. Anna Kowalska-Pyzalska, 2016. "What makes consumers adopt to innovative energy services in the energy market?," HSC Research Reports HSC/16/09, Hugo Steinhaus Center, Wroclaw University of Technology.
    11. Claire Bergaentzlé, 2012. "Particularités d'adoption des compteurs intelligents au Royaume-Uni et en Allemagne : entre marchés de comptage libéralisé et règles à mettre en place pour un réel smart grid intégré," Post-Print halshs-00793322, HAL.

    More about this item

    Keywords

    agent-based simulation; smart metering technology; the Theory of Planned Behaviour; retail electricity market;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0842. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: http://www.econ.cam.ac.uk/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.