IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/54560.html
   My bibliography  Save this paper

The diffusion of electric vehicles: An agent-based microsimulation

Author

Listed:
  • McCoy, Daire
  • Lyons, Sean

Abstract

We implement an agent-based, threshold model of innovation diffusion to simulate the adoption of electric vehicles among Irish households. We use detailed survey microdata to develop a nationally representative, heterogeneous agent population. We then calibrate our agent population to reflect the aggregate socioeconomic characteristics of a number of geographic areas of interest. Our data allow us to create agents with socioeconomic characteristics and environmental preferences. Agents are placed within social networks through which the diffusion process propagates. We find that even if overall adoption is relatively low, mild peer effects could result in large clusters of adopters forming in certain areas. This may put pressure on electricity distribution networks in these areas.

Suggested Citation

  • McCoy, Daire & Lyons, Sean, 2014. "The diffusion of electric vehicles: An agent-based microsimulation," MPRA Paper 54560, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54560
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/54560/1/MPRA_paper_54560.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/54633/1/MPRA_paper_54633.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    3. Tao Zhang & William J. Nuttall, 2007. "An Agent Based Simulation of Smart Metering Technology Adoption," Working Papers EPRG 0727, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    5. Susanne Linder, 2011. "Spatial diffusion of electric vehicles in the German metropolitan region of Stuttgart," ERSA conference papers ersa11p557, European Regional Science Association.
    6. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    7. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    8. Tran, Martino, 2012. "Technology-behavioural modelling of energy innovation diffusion in the UK," Applied Energy, Elsevier, vol. 95(C), pages 1-11.
    9. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    10. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    11. Campbell, Amy R. & Ryley, Tim & Thring, Rob, 2012. "Identifying the early adopters of alternative fuel vehicles: A case study of Birmingham, United Kingdom," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1318-1327.
    12. Saarenpää, Jukka & Kolehmainen, Mikko & Niska, Harri, 2013. "Geodemographic analysis and estimation of early plug-in hybrid electric vehicle adoption," Applied Energy, Elsevier, vol. 107(C), pages 456-464.
    13. Ozaki, Ritsuko & Sevastyanova, Katerina, 2011. "Going hybrid: An analysis of consumer purchase motivations," Energy Policy, Elsevier, vol. 39(5), pages 2217-2227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pillai, Arya & Curtis, John & Tovar Reanos, Miguel, 2021. "Spatial scenarios of potential electric vehicle adopters in Ireland," Papers WP705, Economic and Social Research Institute (ESRI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    2. Heike I. Brugger & Adam Douglas Henry, 2019. "Equity of Incentives: Agent-Based Explorations of How Social Networks Influence the Efficacy of Programs to Promote Solar Adoption," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    3. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    4. Pettifor, H. & Wilson, C. & Axsen, J. & Abrahamse, W. & Anable, J., 2017. "Social influence in the global diffusion of alternative fuel vehicles – A meta-analysis," Journal of Transport Geography, Elsevier, vol. 62(C), pages 247-261.
    5. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    6. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    7. Garth Heutel & Erich Muehlegger, 2015. "Consumer Learning and Hybrid Vehicle Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 125-161, September.
    8. Heymann, Fabian & Miranda, Vladimiro & Soares, Filipe Joel & Duenas, Pablo & Perez Arriaga, Ignacio & Prata, Ricardo, 2019. "Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal," Applied Energy, Elsevier, vol. 256(C).
    9. Melton, Noel & Axsen, Jonn & Goldberg, Suzanne, 2017. "Evaluating plug-in electric vehicle policies in the context of long-term greenhouse gas reduction goals: Comparing 10 Canadian provinces using the “PEV policy report card”," Energy Policy, Elsevier, vol. 107(C), pages 381-393.
    10. Dimatulac, Terence & Maoh, Hanna, 2017. "The spatial distribution of hybrid electric vehicles in a sprawled mid-size Canadian city: Evidence from Windsor, Canada," Journal of Transport Geography, Elsevier, vol. 60(C), pages 59-67.
    11. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    12. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    13. Wolf, Ingo & Schröder, Tobias & Neumann, Jochen & de Haan, Gerhard, 2015. "Changing minds about electric cars: An empirically grounded agent-based modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 269-285.
    14. Long, Zoe & Kormos, Christine & Sussman, Reuven & Axsen, Jonn, 2021. "MPG, fuel costs, or savings? Exploring the role of information framing in consumer valuation of fuel economy using a choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 109-127.
    15. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    16. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    17. Laurent Franckx, 2019. "Working Paper 01-19 - Future evolution of the car stock in Belgium: CASMO, the new satellite of PLANET," Working Papers 1901, Federal Planning Bureau, Belgium.
    18. Irwin, Nicholas B., 2021. "Sunny days: Spatial spillovers in photovoltaic system adoptions," Energy Policy, Elsevier, vol. 151(C).
    19. Azadeh Ahkamiraad & Yong Wang, 2018. "An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City," Energies, MDPI, vol. 11(3), pages 1-17, March.
    20. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.

    More about this item

    Keywords

    Electric vehicles; Agent-based modelling; Spatial microsimulation;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D1 - Microeconomics - - Household Behavior
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.