IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v31y2009i3p221-238.html
   My bibliography  Save this article

Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles

Author

Listed:
  • Axsen, Jonn
  • Mountain, Dean C.
  • Jaccard, Mark

Abstract

According to intuition and theories of diffusion, consumer preferences develop along with technological change. However, most economic models designed for policy simulation unrealistically assume static preferences. To improve the behavioral realism of an energy-economy policy model, this study investigates the "neighbor effect," where a new technology becomes more desirable as its adoption becomes more widespread in the market. We measure this effect as a change in aggregated willingness to pay under different levels of technology penetration. Focusing on hybrid-electric vehicles (HEVs), an online survey experiment collected stated preference (SP) data from 535 Canadian and 408 Californian vehicle owners under different hypothetical market conditions. Revealed preference (RP) data was collected from the same respondents by eliciting the year, make and model of recent vehicle purchases from regions with different degrees of HEV popularity: Canada with 0.17% new market share, and California with 3.0% new market share. We compare choice models estimated from RP data only with three joint SP-RP estimation techniques, each assigning a different weight to the influence of SP and RP data in coefficient estimates. Statistically, models allowing more RP influence outperform SP influenced models. However, results suggest that because the RP data in this study is afflicted by multicollinearity, techniques that allow more SP influence in the beta estimates while maintaining RP data for calibrating vehicle class constraints produce more realistic estimates of willingness to pay. Furthermore, SP influenced coefficient estimates also translate to more realistic behavioral parameters for CIMS, allowing more sensitivity to policy simulations.

Suggested Citation

  • Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
  • Handle: RePEc:eee:resene:v:31:y:2009:i:3:p:221-238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928-7655(09)00003-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norton, Bryan & Costanza, Robert & Bishop, Richard C., 1998. "The evolution of preferences: Why 'sovereign' preferences may not lead to sustainable policies and what to do about it," Ecological Economics, Elsevier, vol. 24(2-3), pages 193-211, February.
    2. Douglas D. Davis & Edward L. Millner, 2005. "Rebates, Matches, and Consumer Behavior," Southern Economic Journal, John Wiley & Sons, vol. 72(2), pages 410-421, October.
    3. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    4. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    5. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    7. Greene, David L. & Patterson, Philip D. & Singh, Margaret & Li, Jia, 2005. "Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy," Energy Policy, Elsevier, vol. 33(6), pages 757-775, April.
    8. Greene, David L. & Patterson, Philip D. & Singh, Margaret & Li, Jia, 2005. "Corrigendum to "Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy" [Energy Policy 33 (2005) 757-775]," Energy Policy, Elsevier, vol. 33(14), pages 1901-1902, September.
    9. Axsen, Jonn & Kurani, Kenneth S, 2008. "The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts," Institute of Transportation Studies, Working Paper Series qt4491w7kf, Institute of Transportation Studies, UC Davis.
    10. Frank T. Denton & Dean C. Mountain & Byron G. Spencer, 2002. "Age, Retirement and Expenditure Patterns: An Econometric Study of Older Canadian Households," Quantitative Studies in Economics and Population Research Reports 375, McMaster University.
    11. Riccardo Scarpa & John M. Rose, 2008. "Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 253-282, September.
    12. Adam B. Jaffe & Robert N. Stavins, 1994. "Energy-Efficiency Investments and Public Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 43-66.
    13. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    14. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    15. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    16. DeShazo, J. R. & Fermo, German, 2002. "Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 123-143, July.
    17. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    18. Frank Denton & Dean Mountain & Byron Spencer, 2006. "Age, Retirement, and Expenditure Patterns: An Econometric Study of Older Households," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 34(4), pages 421-434, December.
    19. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304.
    20. Couper, Mick P. & Kapteyn, Arie & Schonlau, Matthias & Winter, Joachim, 2007. "Noncoverage and nonresponse in an Internet survey," Munich Reprints in Economics 20093, University of Munich, Department of Economics.
    21. Douglas Davis & Edward Millner & Robert Reilly, 2005. "Subsidy Schemes and Charitable Contributions: A Closer Look," Experimental Economics, Springer;Economic Science Association, vol. 8(2), pages 85-106, June.
    22. Arentze, Theo & Borgers, Aloys & Timmermans, Harry & DelMistro, Romano, 2003. "Transport stated choice responses: effects of task complexity, presentation format and literacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 229-244, May.
    23. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    24. Jerry A. Hausman, 1979. "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 33-54, Spring.
    25. Eckel, Catherine C. & Grossman, Philip J., 2003. "Rebate versus matching: does how we subsidize charitable contributions matter?," Journal of Public Economics, Elsevier, vol. 87(3-4), pages 681-701, March.
    26. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    27. Train, Kenneth, 1985. "Discount rates in consumers' energy-related decisions: A review of the literature," Energy, Elsevier, vol. 10(12), pages 1243-1253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    2. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    3. Parsons, George R. & Hidrue, Michael K. & Kempton, Willett & Gardner, Meryl P., 2014. "Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms," Energy Economics, Elsevier, vol. 42(C), pages 313-324.
    4. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    5. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    6. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    7. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    9. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    10. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    11. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2012. "Keys to Smart Home Diffusion: A Stated Preference Analysis of Smart Meters, Photovoltaic Generation, and Electric/Hybrid Vehicles," Discussion papers e-11-011, Graduate School of Economics Project Center, Kyoto University.
    12. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    13. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    14. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    15. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    16. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    17. Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008. "Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles," ZEW Discussion Papers 08-088, ZEW - Leibniz Centre for European Economic Research.
    18. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    19. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    20. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:31:y:2009:i:3:p:221-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.