IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v48y2014i4p671-683.html
   My bibliography  Save this article

Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator

Author

Listed:
  • Ricardo A. Daziano

    (School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853)

  • Martin Achtnicht

    (Centre for European Economic Research, D-68161 Mannheim, Germany)

Abstract

In this paper we use Bayes estimates of a multinomial probit model with fully flexible substitution patterns to forecast consumer response to ultra-low-emission vehicles. In this empirical application of the probit Gibbs sampler, we use stated-preference data on vehicle choice from a Germany-wide survey of potential light-duty-vehicle buyers using computer-assisted personal interviewing. We show that Bayesian estimation of a multinomial probit model with a full covariance matrix is feasible for this medium-scale problem and provides results that are very similar to maximum simulated likelihood estimates. Using the posterior distribution of the parameters of the vehicle choice model as well as the GHK simulator, we derive the choice probabilities of the different alternatives. We first show that the Bayes point estimates of the market shares reproduce the observed values. Then we define a base scenario of vehicle attributes that aims to represent an average of the current vehicle choice situation in Germany. Consumer response to qualitative changes in the base scenario is subsequently studied. In particular, we analyze the effect of increasing the network of service stations for charging electric vehicles as well as for refueling hydrogen. The result is the posterior distribution of the choice probabilities that represent adoption of the energy-efficient technologies.

Suggested Citation

  • Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
  • Handle: RePEc:inm:ortrsc:v:48:y:2014:i:4:p:671-683
    DOI: 10.1287/trsc.2013.0464
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0464
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Denis Bolduc & Bernard Fortin & Stephen Gordon, 1997. "Multinomial Probit Estimation of Spatially Interdependent Choices: An Empirical Comparison of Two New Techniques," International Regional Science Review, , vol. 20(1-2), pages 77-101, April.
    2. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    3. Hensher, David A., 2010. "Hypothetical bias, choice experiments and willingness to pay," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 735-752, July.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    6. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    7. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    8. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    9. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    10. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    11. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    12. Brownstone, David & Bunch, David S. & Golob, Thomas F. & Ren, Weiping, 1996. "A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles," University of California Transportation Center, Working Papers qt0244r8g2, University of California Transportation Center.
    13. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    14. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    15. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
    16. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    17. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    18. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    19. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    20. David Hensher & Matthew Beck & John Rose, 2011. "Accounting for Preference and Scale Heterogeneity in Establishing Whether it Matters Who is Interviewed to Reveal Household Automobile Purchase Preferences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 1-22, May.
    21. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    22. Ziegler, Andreas, 2012. "Individual characteristics and stated preferences for alternative energy sources and propulsion technologies in vehicles: A discrete choice analysis for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1372-1385.
    23. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    24. Brownstone, David & Bunch, David S & Golob, Thomas F & Ren, Weiping, 1996. "A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles," University of California Transportation Center, Working Papers qt3sm7w9zk, University of California Transportation Center.
    25. Moore, William L & Holbrook, Morris B, 1990. "Conjoint Analysis on Objects with Environmentally Correlated Attributes: The Questionable Importance of Representative Design," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 490-497, March.
    26. Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt7rf7s3nx, University of California Transportation Center.
    27. Yeonbae Kim & Tai-Yoo Kim & Eunnyeong Heo, 2003. "Bayesian estimation of multinomial probit models of work trip choice," Transportation, Springer, vol. 30(3), pages 351-365, August.
    28. Mariano,Roberto & Schuermann,Til & Weeks,Melvyn J. (ed.), 2000. "Simulation-based Inference in Econometrics," Cambridge Books, Cambridge University Press, number 9780521591126, October.
    29. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tovar Reaños, Miguel A. & Sommerfeld, Katrin, 2018. "Fuel for inequality: Distributional effects of environmental reforms on private transport," Resource and Energy Economics, Elsevier, vol. 51(C), pages 28-43.
    2. Johannes Mauritzen, 2023. "With great power (prices) comes great tail pipe emissions? \\ A natural experiment of electricity prices and electric car adoption," Papers 2304.01709, arXiv.org.
    3. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Abdulrashid, Ismail & Zanjirani Farahani, Reza & Mammadov, Shamkhal & Khalafalla, Mohamed & Chiang, Wen-Chyuan, 2024. "Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    5. Anna Fernández-Antolín & Matthieu Lapparent & Michel Bierlaire, 2018. "Modeling purchases of new cars: an analysis of the 2014 French market," Theory and Decision, Springer, vol. 84(2), pages 277-303, March.
    6. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2022. "Reprint of: Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 250(C).
    7. Guevara, C. Angelo & Figueroa, Esteban & Munizaga, Marcela A., 2021. "Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 326-340.
    8. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    9. Higgins, Christopher D. & Mohamed, Moataz & Ferguson, Mark R., 2017. "Size matters: How vehicle body type affects consumer preferences for electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 182-201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daziano, Ricardo A. & Achtnicht, Martin, 2012. "Forecasting adoption of ultra-low-emission vehicles using the GHK simulator and Bayes estimates of a multinomial probit model," ZEW Discussion Papers 12-017, ZEW - Leibniz Centre for European Economic Research.
    2. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    3. Achtnicht, Martin & Bühler, Georg & Hermeling, Claudia, 2008. "Impact of Service Station Networks on Purchase Decisions of Alternative-fuel Vehicles," ZEW Discussion Papers 08-088, ZEW - Leibniz Centre for European Economic Research.
    4. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    5. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    6. Tanaka, Makoto & Ida, Takanori & Murakami, Kayo & Friedman, Lee, 2014. "Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 194-209.
    7. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R., 2008. "Bayesian analysis of multivariate nominal measures using multivariate multinomial probit models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3697-3708, March.
    8. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    9. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    10. Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    11. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    12. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    13. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    15. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    16. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    17. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    18. Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
    19. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    20. Ricardo A. Daziano & Luis Miranda-Moreno & Shahram Heydari, 2013. "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice," Transport Reviews, Taylor & Francis Journals, vol. 33(5), pages 570-592, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:48:y:2014:i:4:p:671-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.