IDEAS home Printed from https://ideas.repec.org/p/eth/wpswif/10-125.html
   My bibliography  Save this paper

Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis

Author

Abstract

This paper empirically examines the determinants of the demand for alternative energy sources and propulsion technologies in vehicles. The data stem from a stated preference discrete choice experiment with 598 potential car buyers. In order to simulate a realistic automobile purchase situation, seven alternatives were incorporated in each of the six choice sets, i.e. hybrid, gas, biofuel, hydrogen, and electric as well as the common fuels gasoline and diesel. The vehicle types were additionally characterized by a set of attributes, such as purchase price or motor power. Besides these vehicle attributes, our study particularly considers a multitude of individual characteristics, such as socio-demographic and vehicle purchase variables. The econometric analysis with multinomial probit models identifies some population groups with a higher propensity for alternative energy sources or propulsion technologies in vehicles, which can be focused by policy and automobile firms. For example, younger people and people who usually purchase environment-friendly products have a higher stated preference to purchase biofuel, hydrogen, and electric automobiles than other population groups. Methodologically, our study highlights the importance of the inclusion of taste persistence across the choice sets. Furthermore, it suggests a high number of random draws in the Geweke-Hajivassiliou-Keane simulator, which is incorporated in the simulated maximum likelihood estimation and the simulated testing of statistical hypotheses.

Suggested Citation

  • Andreas Ziegler, 2010. "Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis," CER-ETH Economics working paper series 10/125, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  • Handle: RePEc:eth:wpswif:10-125
    as

    Download full text from publisher

    File URL: https://www.ethz.ch/content/dam/ethz/special-interest/mtec/cer-eth/cer-eth-dam/documents/working-papers/WP-10-125.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    2. Dansie, B. R., 1985. "Parameter estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 19(6), pages 526-528, December.
    3. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    4. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    5. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    6. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441 Elsevier.
    7. Benno Torgler & María A.García-Valiñas & Alison Macintyre, 2007. "Differences in Preferences Towards the Environment: The Impact of a Gender, Age and Parental Effect," CREMA Working Paper Series 2008-01, Center for Research in Economics, Management and the Arts (CREMA).
    8. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    9. Lee, Lung-fei, 1999. "Statistical Inference With Simulated Likelihood Functions," Econometric Theory, Cambridge University Press, vol. 15(03), pages 337-360, June.
    10. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    11. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    12. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    13. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    14. Torgler, Benno & Garcia-Valinas, Maria A., 2007. "The determinants of individuals' attitudes towards preventing environmental damage," Ecological Economics, Elsevier, vol. 63(2-3), pages 536-552, August.
    15. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    16. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    17. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    18. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    19. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    20. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    21. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    22. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    2. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
    3. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.

    More about this item

    Keywords

    Alternative energy sources and propulsion technologies in vehicles; stated preferences; discrete choice; multinomial probit models; unobserved heterogeneity; simulated maximum likelihood estimation;

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eth:wpswif:10-125. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/iwethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.