IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Classical Estimation Methods for LDV Models Using Simulation

  • Hajivassiliou, Vassilis A
  • Ruud, Paul A.

This paper discusses estimation methods for limited dependent variable (LDV) models that employ Monte Carlo simulation techniques to overcome computational problems in such models. These difficulties take the form of high dimensional integrals that need to be calculated repeatedly but cannot be easily approximated by series expansions. In the past, investigators were forced to restrict attention to special classes of LDV models that are computationally manageable. The simulation estimation methods we discuss here make it possible to estimate LDV models that are computationally intractable using classical estimation methods. We first review the ways in which LDV models arise, describing the differences and similarities in censored and truncated data generating processes. Censoring and truncation give rise to the troublesome multivariate integrals. Following the LDV models, we described variables simulation methods for evaluating such integrals. Naturally, censoring and truncation play roles in simulation as well. Finally, estimation methods that rely on simulation are described. We review three general approaches that combine estimation of LDV models and simulation: simulation of the log-likelihood function (MSL), simulation of moment functions (MSM), and simulation of the score (MSS).

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.escholarship.org/uc/item/3cg196fr.pdf;origin=repeccitec
Download Restriction: no

Paper provided by Department of Economics, Institute for Business and Economic Research, UC Berkeley in its series Department of Economics, Working Paper Series with number qt3cg196fr.

as
in new window

Length:
Date of creation: 01 Oct 1993
Date of revision:
Handle: RePEc:cdl:econwp:qt3cg196fr
Contact details of provider: Postal: F502 Haas, Berkeley CA 94720-1922
Phone: (510) 642-1922
Fax: (510) 642-5018
Web page: http://www.escholarship.org/repec/iber_econ/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. J. E. Dutt, 1976. "Numerical Aspects of Multivariate Normal Probabilities in Econometric Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 547-561 National Bureau of Economic Research, Inc.
  2. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1993. "The Method of Simulated Scores for the Estimation of LDV Models," Working Papers _023, Yale University.
  3. Stern, Steven, 1992. "A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models," Econometrica, Econometric Society, vol. 60(4), pages 943-52, July.
  4. Ariel Pakes, 1991. "Dynamic Structural Models: Problems and Prospects. Mixed Continuous Discrete Controls and Market Interactions," Cowles Foundation Discussion Papers 984, Cowles Foundation for Research in Economics, Yale University.
  5. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457 Elsevier.
  6. Hotz, V.J. & Miller, R.A., 1989. "Conditional Choice Probabilities And The Estimation Of Dynamic Discrete Choice Models," University of Chicago - Economics Research Center 89-02, Chicago - Economics Research Center.
  7. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
  8. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
  9. Keane, Michael, 1993. "Simulation estimation for panel data models with limited dependent variables," MPRA Paper 53029, University Library of Munich, Germany.
  10. Avery, Robert B & Hansen, Lars Peter & Hotz, V Joseph, 1983. "Multiperiod Probit Models and Orthogonality Condition Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 21-35, February.
  11. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  12. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
  13. Bolduc, Denis, 1992. "Generalized autoregressive errors in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 155-170, April.
  14. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  15. Vassilis Argyrou Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Working Papers _025, Yale University.
  16. Heckman, James J, 1979. "Sample Selection Bias as a Specification Error," Econometrica, Econometric Society, vol. 47(1), pages 153-61, January.
  17. Poirier, Dale J & Ruud, Paul A, 1988. "Probit with Dependent Observations," Review of Economic Studies, Wiley Blackwell, vol. 55(4), pages 593-614, October.
  18. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
  19. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  20. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-20, May.
  21. Lee, Lung-Fei, 1978. "Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 415-33, June.
  22. Bloemen, H.G. & Kapteyn, A., 1992. "The Joint Estimation of Non-Linear Labour Supply Function and Wage Equation Using Simulated Respose Probabilities," Papers 9229, Tilburg - Center for Economic Research.
  23. Paul A. Ruud., 1988. "Extensions of Estimation Methods Using the EM Algorithm.," Economics Working Papers 8899, University of California at Berkeley.
  24. Lewis, H Gregg, 1974. "Comments on Selectivity Biases in Wage Comparisons," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1145-55, Nov.-Dec..
  25. Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, Econometric Society, vol. 59(1), pages 189-210, January.
  26. Beggs, S. & Cardell, S. & Hausman, J., 1981. "Assessing the potential demand for electric cars," Journal of Econometrics, Elsevier, vol. 17(1), pages 1-19, September.
  27. Reuben Gronau, 1974. "The Effect of Children on the Housewife's Value of Time," NBER Chapters, in: Economics of the Family: Marriage, Children, and Human Capital, pages 457-490 National Bureau of Economic Research, Inc.
  28. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
  29. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
  30. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
  31. Goldfelfd, Stephen M. & Quandt, Richard E., 1975. "Estimation in a disequilibrium model and the value of information," Journal of Econometrics, Elsevier, vol. 3(4), pages 325-348, November.
  32. repec:att:wimass:9106 is not listed on IDEAS
  33. Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
  34. J. A. Hausman & D. A. Wise, 1976. "A Conditional Profit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Working papers 173, Massachusetts Institute of Technology (MIT), Department of Economics.
  35. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
  36. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976 Elsevier.
  37. Bolduc, D. & Kaci, M., 1991. "Multinomial Probit Models with Factor-Based Autoregressive Errors: A Computationally Efficient Estimation Approach," Papers 9118, Laval - Recherche en Energie.
  38. Laroque, Guy & Salanie, Bernard, 1989. "Estimation of Multi-market Fix-Price Models: An Application of Pseudo Maximum Likelihood Methods," Econometrica, Econometric Society, vol. 57(4), pages 831-60, July.
  39. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  40. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-62, March.
  41. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
  42. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cdl:econwp:qt3cg196fr. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.