IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Estimation des modèles probit polytomiques : un survol des techniques

  • Bolduc, Denis

    (Département d’économique, Université Laval)

  • Kaci, Mustapha

    (Département d’économique, Université Laval)

The Multinomial Probit (MNP) model provides the most general framework to allow for interdependent alternatives in discrete choice analysis. The primary impediment to this methodology is related to the dimensionality of the response probabilities which are multifold normal integrals of about the size of the choice set. During the last two decades, numerous researches have been devoted to develop practical methodologies to replace these hard to compute choice probabilities in the estimation process. The main objective of this paper is to survey the major and the most important of these techniques. Parce qu’il admet des structures très générales d’interdépendance entre les modalités, le probit polytomique (MNP) fournit une des formes les plus intéressantes pour modéliser les choix discrets qui découlent d’une maximisation d’utilité aléatoire. L’obstacle majeur et bien connu dans l’estimation de ce type de modèle tient à la complexité que prennent les calculs lorsque le nombre de modalités considérées est élevé. Cette situation est due essentiellement à la présence d’intégrales normales multidimensionnelles qui définissent les probabilités de sélection. Au cours des deux dernières décennies, de nombreux efforts ont été effectués visant à produire des méthodes qui permettent de contourner les difficultés de calcul liées à l’estimation des modèles probit polytomiques. L’objectif de ce texte consiste à produire un survol critique des principales méthodes mises de l’avant jusqu’à maintenant pour rendre opérationnel le cadre MNP. Nous espérons qu’il éclairera les praticiens de ces modèles quant au choix de technique d’estimation à favoriser au cours des prochaines années.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://id.erudit.org/iderudit/602113ar
Download Restriction: no

Article provided by Société Canadienne de Science Economique in its journal L'Actualité économique.

Volume (Year): 69 (1993)
Issue (Month): 3 (septembre)
Pages: 161-191

as
in new window

Handle: RePEc:ris:actuec:v:69:y:1993:i:3:p:161-191
Contact details of provider: Web page: http://www.scse.ca/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bolduc, D. & Kaci, M., 1991. "Multinomial Probit Models with Factor-Based Autoregressive Errors: A Computationally Efficient Estimation Approach," Papers 9118, Laval - Recherche en Energie.
  2. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  3. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
  4. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  5. Butler, J S & Moffitt, Robert, 1982. "A Computationally Efficient Quadrature Procedure for the One-Factor Multinomial Probit Model," Econometrica, Econometric Society, vol. 50(3), pages 761-64, May.
  6. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
  7. Ben-Akiva, M. & Bolduc, D., 1991. "Multinomial Probit with Autoregressive Error Structure," Papers 9123, Laval - Recherche en Energie.
  8. Christian GOURIEROUX & Alain MONFORT, 1991. "Simulation Based Inference in Models with Heterogeneity," Annales d'Economie et de Statistique, ENSAE, issue 20-21, pages 69-107.
  9. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-26, March.
  10. Axel Borsch-Supan & Vassilis Hajivassiliou & Laurence J. Kotlikoff, 1992. "Health, Children, and Elderly Living Arrangements: A Multiperiod-Multinomial Probit Model with Unobserved Heterogeneity and Autocorrelated Errors," NBER Chapters, in: Topics in the Economics of Aging, pages 79-108 National Bureau of Economic Research, Inc.
  11. Stern, Steven, 1992. "A Method for Smoothing Simulated Moments of Discrete Probabilities in Multinomial Probit Models," Econometrica, Econometric Society, vol. 60(4), pages 943-52, July.
  12. Bolduc, Denis, 1992. "Generalized autoregressive errors in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 155-170, April.
  13. Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, Econometric Society, vol. 59(1), pages 189-210, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:69:y:1993:i:3:p:161-191. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruce Shearer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.