IDEAS home Printed from https://ideas.repec.org/p/ucb/calbwp/93-219.html

Classical Estimation Methods for LDV Models Using Simulation

Author

Listed:
  • Vassilis A. Hajivassiliou and Paul A. Ruud.

Abstract

This paper discusses estimation methods for limited dependent variable (LDV) models that employ Monte Carlo simulation techniques to overcome computational problems in such models. These difficulties take the form of high dimensional integrals that need to be calculated repeatedly but cannot be easily approximated by series expansions. In the past, investigators were forced to restrict attention to special classes of LDV models that are computationally manageable. The simulation estimation methods we discuss here make it possible to estimate LDV models that are computationally intractable using classical estimation methods. We first review the ways in which LDV models arise, describing the differences and similarities in censored and truncated data generating processes. Censoring and truncation give rise to the troublesome multivariate integrals. Following the LDV models, we described various simulation methods for evaluating such integrals. Naturally, censoring and truncation play roles in simulation as well. Finally,estimation methods that rely on simulation are described. We review three general approaches that combine estimation of LDV models and simulation: simulation of the log-likelihood function (MSL), simulation of moment functions (MSM), and simulation of the score (MSS). The MSS is a combination of ideas from MSL and MSM, treating the efficient score of the log-likelihood function as a moment function. We use the rank ordered probit model as an illustrative example to investigate the comparative properties of these simulation estimation approaches.

Suggested Citation

  • Vassilis A. Hajivassiliou and Paul A. Ruud., 1993. "Classical Estimation Methods for LDV Models Using Simulation," Economics Working Papers 93-219, University of California at Berkeley.
  • Handle: RePEc:ucb:calbwp:93-219
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucb:calbwp:93-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.