IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v7y2009i4p343-376.html
   My bibliography  Save this article

A new use of importance sampling to reduce computational burden in simulation estimation

Author

Listed:
  • Daniel Ackerberg

    ()

Abstract

Method of Simulated Moments (MSM) estimators introduced by McFadden (1989)and Pakes and Pollard (1989) are of great use to applied economists. They are relatively easy to use even for estimating very complicated economic models. One simply needs to generate simulated data according to the model and choose parameters that make moments of this simulated data as close as possible to moments of the true data. This paper uses importance sampling techniques to address a significant computational caveat regarding these MSM estimators - that often one's economic model is hard to solve. Examples include complicated equilibrium models and dynamic programming problems. We show that importance sampling can reduce he number of times a particular model needs to be solved in an estimation procedure, significantly decreasing computational burden.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
  • Handle: RePEc:kap:qmktec:v:7:y:2009:i:4:p:343-376
    DOI: 10.1007/s11129-009-9074-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-009-9074-z
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    2. Ariel Pakes & Michael Ostrovsky & Steven Berry, 2007. "Simple estimators for the parameters of discrete dynamic games (with entry/exit examples)," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 373-399, June.
    3. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    4. Berkovec, James & Stern, Steven, 1991. "Job Exit Behavior of Older Men," Econometrica, Econometric Society, vol. 59(1), pages 189-210, January.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    7. Igal Hendel & Aviv Nevo, 2006. "Measuring the Implications of Sales and Consumer Inventory Behavior," Econometrica, Econometric Society, vol. 74(6), pages 1637-1673, November.
    8. Hajivassiliou, V A, 1994. "A Simulation Estimation Analysis of the External Debt Crises of Developing Countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 109-131, April-Jun.
    9. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    10. Stern, Steven, 1994. "Two Dynamic Discrete Choice Estimation Problems and Simulation Method Solutions," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 695-702, November.
    11. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    12. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 265-289.
    13. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    14. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    15. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    16. M. Ali Khan, 2007. "Perfect Competition," PIDE-Working Papers 2007:15, Pakistan Institute of Development Economics.
    17. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    18. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    19. Mireia Jofre-Bonet & Martin Pesendorfer, 2003. "Estimation of a Dynamic Auction Game," Econometrica, Econometric Society, vol. 71(5), pages 1443-1489, September.
    20. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    21. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    22. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    23. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    24. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 497-529.
    25. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    26. Patrick Bajari & Han Hong & Stephen P. Ryan, 2010. "Identification and Estimation of a Discrete Game of Complete Information," Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
    27. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    28. F. Gasmi & J.J. Laffont & Q. Vuong, 1992. "Econometric Analysisof Collusive Behaviorin a Soft‐Drink Market," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 1(2), pages 277-311, June.
    29. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    30. John Rust, 1997. "Using Randomization to Break the Curse of Dimensionality," Econometrica, Econometric Society, vol. 65(3), pages 487-516, May.
    31. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    32. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    33. repec:cup:etheor:v:11:y:1995:i:3:p:437-83 is not listed on IDEAS
    34. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, vol. 66(4), pages 863-896, July.
    35. Daniel A. Ackerberg, 2003. "Advertising, learning, and consumer choice in experience good markets: an empirical examination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(3), pages 1007-1040, August.
    36. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    37. Berry, Steven T, 1992. "Estimation of a Model of Entry in the Airline Industry," Econometrica, Econometric Society, vol. 60(4), pages 889-917, July.
    38. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    39. Lee, L.F., 1992. "Asymptotic Bias in Maximum Simulated Likelihood Estimation of Discrete Choice Models," Papers 93-03, Michigan - Center for Research on Economic & Social Theory.
    40. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    41. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    42. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    43. Davis, Peter, 2006. "Estimation of quantity games in the presence of indivisibilities and heterogeneous firms," Journal of Econometrics, Elsevier, vol. 134(1), pages 187-214, September.
    44. repec:adr:anecst:y:1991:i:20-21:p:04 is not listed on IDEAS
    45. Wesley Hartmann, 2006. "Intertemporal effects of consumption and their implications for demand elasticity estimates," Quantitative Marketing and Economics (QME), Springer, vol. 4(4), pages 325-349, December.
    46. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 901-928.
    47. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    48. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    49. Keane, Michael P & Wolpin, Kenneth I, 2001. "The Effect of Parental Transfers and Borrowing Constraints on Educational Attainment," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(4), pages 1051-1103, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    2. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    3. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
    4. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
    5. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    6. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    7. Kerem Tuzcuoglu, 2019. "Composite Likelihood Estimation of an Autoregressive Panel Probit Model with Random Effects," Staff Working Papers 19-16, Bank of Canada.
    8. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1445-1488, December.
    9. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    10. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    11. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    12. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    13. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    14. Srisuma, Sorawoot & Linton, Oliver, 2012. "Semiparametric estimation of Markov decision processes with continuous state space," Journal of Econometrics, Elsevier, vol. 166(2), pages 320-341.
    15. David H. Good & M. Ishaq Nadiri & Robin C. Sickles, 1996. "Index Number and Factor Demand Approaches to the Estimation of Productivity," NBER Working Papers 5790, National Bureau of Economic Research, Inc.
    16. Gallant, A. Ronald & Hong, Han & Khwaja, Ahmed, 2018. "A Bayesian approach to estimation of dynamic models with small and large number of heterogeneous players and latent serially correlated states," Journal of Econometrics, Elsevier, vol. 203(1), pages 19-32.
    17. Panle Jia Barwick & Parag A. Pathak, 2015. "The costs of free entry: an empirical study of real estate agents in Greater Boston," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 103-145, March.
    18. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    19. Andriy Norets, 2010. "Continuity and differentiability of expected value functions in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 1(2), pages 305-322, November.
    20. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.

    More about this item

    Keywords

    Simulation estimators; Importance sampling; Monte-Carlo study; C13; C16; C63;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:7:y:2009:i:4:p:343-376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.