IDEAS home Printed from https://ideas.repec.org/p/sce/scecf9/332.html
   My bibliography  Save this paper

Swapping the Nested Fixed-Point Algorithm: a Class of Estimators for Discrete Markov Decision Models

Author

Listed:
  • Victor Aguirregabiria

    () (University of Chicago)

  • Pedro Mira

    () (CEMFI)

Abstract

This paper proposes a procedure for the estimation of discrete Markov decision models and studies its statistical and computational properties. Our method is similar to Rust's Nested Fixed-Point algorithm (NFXP), but the order of the two nested algorithms is swapped. First, we prove that this method produces the maximum likelihood estimator under the same conditions as NFXP. However, our procedure requires significantly fewer policy iterations than NFXP. Second, based on this algorithm, we define a class of sequential consistent estimators, K -stage Policy Iteration (PI) estimators, that encompasses MLE and Holz-Miller, and we obtain a recursive expression for their asymptotic covariance matrices. This presents the researcher with a 'menu' of sequential estimators reflecting a trade-off between efficiency and computational cost. Using actual and simulated data we compare the relative performance of these estimators. In all our experiments, the benefits in efficiency of using a two-stage PI estimator instead of a one-stage estimator (i.e., Hotz-Miller) are very significant. More interestingly, the benefits of MLE relative to two-stage PI are small.

Suggested Citation

  • Victor Aguirregabiria & Pedro Mira, 1999. "Swapping the Nested Fixed-Point Algorithm: a Class of Estimators for Discrete Markov Decision Models," Computing in Economics and Finance 1999 332, Society for Computational Economics.
  • Handle: RePEc:sce:scecf9:332
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:332. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.