IDEAS home Printed from
   My bibliography  Save this paper

Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models


  • Víctor Aguirregabiria
  • Pedro Mira


This paper proposes a procedure for the estimation of discrete Markov decision models and studies its statistical and computational properties. Our Nested Pseudo-Likelihood method (NPL) is similar to Rust's Nested Fixed Point algorithm (NFXP), but the order of the two nested algorithms is swapped. First, we prove that NPL produces the Maximum Likelihood Estimator under the same conditions as NFXP. Our procedure requires fewer policy iterations at the expense of more likelihood-climbing iterations. We focus on a class of infinite-horizon, partial likelihood problems for which NPL results in large computational gains. Second, based on this algorithm we define a class of consistent and asymptotically equivalent Sequential Policy Iteration (PI) estimators, which encompasses both Hotz-Miller's CCP estimator and the partial Maximum Likekihood estimator. This presents the researcher with a ''menu'' of sequential estimators reflecting a trade-off between finite-sample precision and computational cost. Using actual and simulated data we compare the relative performance of these estimators. In all our experiments the benefits in terms of precision of using a 2-stage PI estimator instead of 1-stage (i.e., Hotz-Miller) are very significant. More interestingly, the benefits of MLE relative to 2-stage PI are small.

Suggested Citation

  • Víctor Aguirregabiria & Pedro Mira, 1999. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Working Papers wp1999_9904, CEMFI.
  • Handle: RePEc:cmf:wpaper:wp1999_9904

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmf:wpaper:wp1999_9904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Araceli Requerey). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.