IDEAS home Printed from https://ideas.repec.org/p/red/sed005/432.html
   My bibliography  Save this paper

Bayesian Estimation of Dynamic Discrete Choice Models

Author

Listed:
  • Susumu Imai
  • Neelam Jain

    () (Economics Northern Illinois University)

Abstract

We propose a new methodology for structural estimation of infinite horizon dynamic discrete choice models. We combine the dynamic programming (DP) solution algorithm with the Bayesian Markov chain Monte Carlo algorithm into a single algorithm that solves the DP problem and estimates the parameters simultaneously. As a result, the computational burden of estimating a dynamic model becomes comparable to that of a static model. Another feature of our algorithm is that even though the number of grid points on the state variable is small per solution-estimation iteration, the number of effective grid points increases with the number of estimation iterations. This is how we help ease the "curse of dimensionality." We simulate and estimate several versions of a simple model of entry and exit to illustrate our methodology. We also prove that under standard conditions, the parameters converge in probability to the true posterior distribution, regardless of the starting values. Copyright 2009 The Econometric Society.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Susumu Imai & Neelam Jain, 2005. "Bayesian Estimation of Dynamic Discrete Choice Models," 2005 Meeting Papers 432, Society for Economic Dynamics.
  • Handle: RePEc:red:sed005:432
    as

    Download full text from publisher

    File URL: http://repec.org/sed2005/up.7858.1106936354.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 265-289.
    2. Lancaster, Tony, 1997. "Exact Structural Inference in Optimal Job-Search Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(2), pages 165-179, April.
    3. Susumu Imai & Kala Krishna, 2001. "Employment, Dynamic Deterrence and Crime," NBER Working Papers 8281, National Bureau of Economic Research, Inc.
    4. Houser, Daniel, 2003. "Bayesian analysis of a dynamic stochastic model of labor supply and saving," Journal of Econometrics, Elsevier, vol. 113(2), pages 289-335, April.
    5. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    6. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. Susumu Imai & Michael P. Keane, 2004. "Intertemporal Labor Supply and Human Capital Accumulation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 601-641, May.
    9. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    10. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
    11. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    12. Wolfgang HÄRDLE & O. LINTON, 1995. "Nonparametric Regression," SFB 373 Discussion Papers 1995,29, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    13. John F. Geweke & Michael P. Keane, 1996. "Bayesian inference for dynamic choice models without the need for dynamic programming," Working Papers 564, Federal Reserve Bank of Minneapolis.
    14. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    15. Geweke, John & Houser, Dan & Keane, Michael, 1999. "Simulation Based Inference for Dynamic Multinomial Choice Models," MPRA Paper 54279, University Library of Munich, Germany.
    16. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Structural estimation; Dynamic programming; MCMC;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • L00 - Industrial Organization - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed005:432. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: http://edirc.repec.org/data/sedddea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.