IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Applied nonparametric methods

  • Oliver LINTON

We review different approaches to nonparametric density and regression estimation. Kernel estimators are motivated from local averaging and solving ill-posed problems. Kernel estimators are compared to k-NN estimators, orthogonal series and splines. Pointwise and uniform confidence bands are described, and the choice of smoothing parameter is discussed. Finally, the method is applied to nonparametric prediction of time series and to semiparametric estimation.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://amadeus.wiwi.hu-berlin.de/pub/papers/ise/dp9312.ps.Z
Our checks indicate that this address may not be valid because: 500 Failed to connect to FTP server amadeus.wiwi.hu-berlin.de: Net::FTP: Bad hostname 'amadeus.wiwi.hu-berlin.de'. If this is indeed the case, please notify (Thomas Krichel)


Download Restriction: no

Paper provided by Humboldt Universitaet Berlin in its series Statistic und Oekonometrie with number 9312.

as
in new window

Length:
Date of creation:
Date of revision:
Handle: RePEc:wop:humbse:9312
Contact details of provider: Postal: Spandauer Str. 1, 10178 Berlin
Phone: +49-30-2093 5713
Fax: +49-30-2093 5712
Web page: http://sfb.wiwi.hu-berlin.de/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. R. F. Engle & R. Gardner, 1973. "Some Finite Sample Properties of Spectral Estimators of a Linear Regression," Working papers 122, Massachusetts Institute of Technology (MIT), Department of Economics.
  2. Deaton, Angus, 1989. "Rice Prices and Income Distribution in Thailand: A Non-parametric Analysis," Economic Journal, Royal Economic Society, vol. 99(395), pages 1-37, Supplemen.
  3. repec:cup:etheor:v:6:y:1990:i:4:p:466-79 is not listed on IDEAS
  4. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
  5. Altug, S. & Miller, R.A., 1991. "Human Capital, Aggregate Shocks and Panel Data Estimation," Papers 9128, Tilburg - Center for Economic Research.
  6. Donald W.K. Andrews, 1988. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Cowles Foundation Discussion Papers 874R, Cowles Foundation for Research in Economics, Yale University, revised May 1989.
  7. Andrews, Donald W.K. & Whang, Yoon-Jae, 1990. "Additive Interactive Regression Models: Circumvention of the Curse of Dimensionality," Econometric Theory, Cambridge University Press, vol. 6(04), pages 466-479, December.
  8. Engle, Robert F & Hendry, David F & Richard, Jean-Francois, 1983. "Exogeneity," Econometrica, Econometric Society, vol. 51(2), pages 277-304, March.
  9. Delgado, Miguel A., 1992. "Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model," Econometric Theory, Cambridge University Press, vol. 8(02), pages 203-222, June.
  10. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
  11. Hardle, W. & Hall, P. & Ichimura, H., 1991. "Optimal smoothing in single index models," CORE Discussion Papers 1991007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Gallant, A. Ronald & Souza, Geraldo, 1991. "On the asymptotic normality of Fourier flexible form estimates," Journal of Econometrics, Elsevier, vol. 50(3), pages 329-353, December.
  13. Chaudhuri, Probal, 1991. "Global nonparametric estimation of conditional quantile functions and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 246-269, November.
  14. Elbadawi, Ibrahim & Gallant, A Ronald & Souza, Geraldo, 1983. "An Elasticity Can Be Estimated Consistently without A Priori Knowledge of Functional Form," Econometrica, Econometric Society, vol. 51(6), pages 1731-51, November.
  15. Das, Sanghamitra, 1991. "A semiparametric structural analysis of the idling of cement kilns," Journal of Econometrics, Elsevier, vol. 50(3), pages 235-256, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wop:humbse:9312. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.