IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

M-Testing Using Finite and Infinite Dimensional Parameter Estimators

  • White, Halbert
  • Hong, Yongmiao
Registered author(s):

The m-testing approach provides a general and convenient framework in which to view and construct specification tests for econometric models. Previous m-testing frameworks only consider test statistics that involve finite dimensional parameter estimators and infinite dimensional parameter estimators affecting the limit distribution of the m-test statistics. In this paper we propose a new m-testing framework using both finite and infinite dimensional parameter estimators, where the latter may or may not affect the limit distribution of the m-test. This greatly extends the potential and flexibility of m-testing. The new m-testing framework can be used to test hypotheses on parametric, semiparametric and nonparametric models. Some examples are given to illustrate how to use it to develop new specification tests

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.escholarship.org/uc/item/9qz123ng.pdf;origin=repeccitec
Download Restriction: no

Paper provided by Department of Economics, UC San Diego in its series University of California at San Diego, Economics Working Paper Series with number qt9qz123ng.

as
in new window

Length:
Date of creation: 01 Jan 1999
Date of revision:
Handle: RePEc:cdl:ucsdec:qt9qz123ng
Contact details of provider: Postal:
9500 Gilman Drive, La Jolla, CA 92093-0508

Phone: (858) 534-3383
Fax: (858) 534-7040
Web page: http://www.escholarship.org/repec/ucsdecon/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-45, March.
  2. Mikosch, T., 1991. "Functional limit theorems for random quadratic forms," Stochastic Processes and their Applications, Elsevier, vol. 37(1), pages 81-98, February.
  3. Whang, Yoon-Jae & Andrews, Donald W. K., 1993. "Tests of specification for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 277-318.
  4. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
  5. Wooldridge, Jeffrey M., 1992. "A Test for Functional Form Against Nonparametric Alternatives," Econometric Theory, Cambridge University Press, vol. 8(04), pages 452-475, December.
  6. Bera, Anil K. & Jarque, Carlos M., 1982. "Model specification tests : A simultaneous approach," Journal of Econometrics, Elsevier, vol. 20(1), pages 59-82, October.
  7. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
  8. Thomas M. Stoker, 1989. "Tests of Additive Derivative Constraints," Review of Economic Studies, Oxford University Press, vol. 56(4), pages 535-552.
  9. Hausman, Jerry A, 1978. "Specification Tests in Econometrics," Econometrica, Econometric Society, vol. 46(6), pages 1251-71, November.
  10. Gallant, A. Ronald & Souza, Geraldo, 1991. "On the asymptotic normality of Fourier flexible form estimates," Journal of Econometrics, Elsevier, vol. 50(3), pages 329-353, December.
  11. Gallant, A. Ronald, 1982. "Unbiased determination of production technologies," Journal of Econometrics, Elsevier, vol. 20(2), pages 285-323, November.
  12. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
  13. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 1-21, June.
  14. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-67, July.
  15. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," Review of Economic Studies, Oxford University Press, vol. 58(3), pages 437-453.
  16. P. M. Robinson, 1989. "Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series," Review of Economic Studies, Oxford University Press, vol. 56(4), pages 511-534.
  17. Lavergne, Pascal & Vuong, Quang H, 1996. "Nonparametric Selection of Regressors: The Nonnested Case," Econometrica, Econometric Society, vol. 64(1), pages 207-19, January.
  18. Bierens, H.J., 1989. "A consistent conditional moment test of functional form," Serie Research Memoranda 0064, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  19. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  20. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-50, July.
  21. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-70, September.
  22. Geweke, John, 1981. "The Approximate Slopes of Econometric Tests," Econometrica, Econometric Society, vol. 49(6), pages 1427-42, November.
  23. Yatchew, Adonis John, 1992. "Nonparametric Regression Tests Based on Least Squares," Econometric Theory, Cambridge University Press, vol. 8(04), pages 435-451, December.
  24. Haerdle,Wolfgang & Stoker,Thomas, 1987. "Investigations smooth multiple regression by the method of average derivatives," Discussion Paper Serie A 107, University of Bonn, Germany.
  25. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-91, July.
  26. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt9qz123ng. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.