IDEAS home Printed from https://ideas.repec.org/h/eee/ecochp/6b-76.html
   My bibliography  Save this book chapter

Large Sample Sieve Estimation of Semi-Nonparametric Models

In: Handbook of Econometrics

Author

Listed:
  • Chen, Xiaohong

Abstract

Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; semi-nonparametric models are more flexible and robust, but lead to other complications such as introducing infinite-dimensional parameter spaces that may not be compact and the optimization problem may no longer be well-posed. The method of sieves provides one way to tackle such difficulties by optimizing an empirical criterion over a sequence of approximating parameter spaces (i.e., sieves); the sieves are less complex but are dense in the original space and the resulting optimization problem becomes well-posed. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated semi-nonparametric models with (or without) endogeneity and latent heterogeneity. It can easily incorporate prior information and constraints, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. It can simultaneously estimate the parametric and nonparametric parts in semi-nonparametric models, typically with optimal convergence rates for both parts. This chapter describes estimation of semi-nonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve M-estimates, pointwise normality of series estimates of regression functions, root-n asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite-dimensional parameters. Examples are used to illustrate the general results.

Suggested Citation

  • Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
  • Handle: RePEc:eee:ecochp:6b-76
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B7GX7-4R9GYJS-9/2/7659dc72f0118d8998667090f2550089
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    2. Bansal, Ravi & Viswanathan, S, 1993. "No Arbitrage and Arbitrage Pricing: A New Approach," Journal of Finance, American Finance Association, vol. 48(4), pages 1231-1262, September.
    3. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    4. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    5. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    6. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    7. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818728, July.
    8. Chen Xiaohong & White Halbert, 2002. "Asymptotic Properties of Some Projection-based Robbins-Monro Procedures in a Hilbert Space," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(1), pages 1-55, April.
    9. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524131, July.
    10. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818735, July.
    11. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524124, July.
    12. P. Lavergne & Q.H. Vuong, 1996. "Nonparametric selection of regressors : the nonnested case [[Sélection non paramétrique de régresseurs : le cas de régressions non emboîtées]]," Post-Print hal-02689500, HAL.
    13. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    14. Shen X. & Ye J., 2002. "Adaptive Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 210-221, March.
    15. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    16. Mathias Dewatripont & Lars Peter Hansen & Stephen Turnovsky, 2003. "Advances in economics and econometrics :theory and applications," ULB Institutional Repository 2013/9557, ULB -- Universite Libre de Bruxelles.
    17. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521818742, July.
    18. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    19. Dewatripont,Mathias & Hansen,Lars Peter & Turnovsky,Stephen J. (ed.), 2003. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521524117, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    2. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    3. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    4. Christoph Breunig, 2019. "Goodness-of-Fit Tests based on Series Estimators in Nonparametric Instrumental Regression," Papers 1909.10133, arXiv.org.
    5. Fabian Dunker, 2015. "Adaptive estimation for some nonparametric instrumental variable models," Papers 1511.03977, arXiv.org, revised Aug 2021.
    6. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    7. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    8. Dunker, Fabian & Florens, Jean-Pierre & Hohage, Thorsten & Johannes, Jan & Mammen, Enno, 2014. "Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression," Journal of Econometrics, Elsevier, vol. 178(P3), pages 444-455.
    9. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
    10. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    11. Elmar Mertens, 2016. "Managing Beliefs about Monetary Policy under Discretion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(4), pages 661-698, June.
    12. Matzkin, Rosa L., 2016. "On independence conditions in nonseparable models: Observable and unobservable instruments," Journal of Econometrics, Elsevier, vol. 191(2), pages 302-311.
    13. Severini, Thomas A. & Tripathi, Gautam, 2006. "Some Identification Issues In Nonparametric Linear Models With Endogenous Regressors," Econometric Theory, Cambridge University Press, vol. 22(2), pages 258-278, April.
    14. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    15. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2003. "Nonparametric IV estimation of shape-invariant Engel curves," CeMMAP working papers CWP15/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    17. Beggs Alan, 2009. "Learning in Bayesian Games with Binary Actions," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 9(1), pages 1-30, September.
    18. John Geanakoplos & Robert Axtell & J. Doyne Farmer & Peter Howitt & Benjamin Conlee & Jonathan Goldstein & Matthew Hendrey & Nathan M. Palmer & Chun-Yi Yang, 2012. "Getting at Systemic Risk via an Agent-Based Model of the Housing Market," American Economic Review, American Economic Association, vol. 102(3), pages 53-58, May.
    19. Christian Hellwig, 2004. "Heterogeneous Information and the Benefits of Public Information Disclosures (October 2005)," UCLA Economics Online Papers 283, UCLA Department of Economics.
    20. Gärtner, D.L. & Zhou, J., 2012. "Delays in Leniency Application : Is There Really a Race to the Enforcer’s Door?," Other publications TiSEM cbb8fac0-0cd7-4a0c-a6d4-a, Tilburg University, School of Economics and Management.

    More about this item

    JEL classification:

    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:6b-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.