IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this book chapter

Large Sample Sieve Estimation of Semi-Nonparametric Models

In: Handbook of Econometrics

Listed author(s):
  • Chen, Xiaohong
Registered author(s):

    Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; semi-nonparametric models are more flexible and robust, but lead to other complications such as introducing infinite-dimensional parameter spaces that may not be compact and the optimization problem may no longer be well-posed. The method of sieves provides one way to tackle such difficulties by optimizing an empirical criterion over a sequence of approximating parameter spaces (i.e., sieves); the sieves are less complex but are dense in the original space and the resulting optimization problem becomes well-posed. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated semi-nonparametric models with (or without) endogeneity and latent heterogeneity. It can easily incorporate prior information and constraints, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. It can simultaneously estimate the parametric and nonparametric parts in semi-nonparametric models, typically with optimal convergence rates for both parts. This chapter describes estimation of semi-nonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve M-estimates, pointwise normality of series estimates of regression functions, root-n asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite-dimensional parameters. Examples are used to illustrate the general results.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B7GX7-4R9GYJS-9/2/7659dc72f0118d8998667090f2550089
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    as
    in new window

    This chapter was published in:
  • J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b, January.
  • This item is provided by Elsevier in its series Handbook of Econometrics with number 6b-76.
    Handle: RePEc:eee:ecochp:6b-76
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window

    1. Oliver Linton & Zhijie Xiao, 2001. "Second-order approximation for adaptive regression estimators," LSE Research Online Documents on Economics 317, London School of Economics and Political Science, LSE Library.
    2. Coppejans, Mark & Gallant, A. Ronald, 2000. "Cross Validated SNP Density Estimates," Working Papers 00-10, Duke University, Department of Economics.
    3. Hidehiko Ichimura & Sokbae Lee, 2006. "Characterization of the asymptotic distribution of semiparametric M-estimators," CeMMAP working papers CWP15/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, May.
    6. Richard Blundell & Martin Browning & Ian Crawford, 2002. "Nonparametric Engel Curves and Revealed Preference," CAM Working Papers 2002-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    7. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models: Rejoinder," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 503-509, October.
    8. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. " A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    9. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    10. Jovanovic, Boyan, 1979. "Job Matching and the Theory of Turnover," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 972-990, October.
    11. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," Review of Economic Studies, Oxford University Press, vol. 72(2), pages 343-366.
    12. James J. Heckman & Christopher J. Flinn, 1982. "New Methods for Analyzing Structural Models of Labor Force Dynamics," NBER Working Papers 0856, National Bureau of Economic Research, Inc.
    13. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    14. Joel Horowitz & Sokbae Lee, 2006. "Nonparametric instrumental variables estimation of a quantile regression model," CeMMAP working papers CWP09/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    16. Chen, Xiaohong & White, Halbert, 1998. "Nonparametric Adaptive Learning with Feedback," Journal of Economic Theory, Elsevier, vol. 82(1), pages 190-222, September.
    17. Donald W.K. Andrews, 1988. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Cowles Foundation Discussion Papers 874R, Cowles Foundation for Research in Economics, Yale University, revised May 1989.
    18. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 33-58.
    19. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, 01.
    20. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. Hong, Yongmiao & White, Halbert, 1995. "Consistent Specification Testing via Nonparametric Series Regression," Econometrica, Econometric Society, vol. 63(5), pages 1133-1159, September.
    23. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of semiparametric models when the criterion function is not smooth," LSE Research Online Documents on Economics 2167, London School of Economics and Political Science, LSE Library.
    24. Whitney K. Newey, 2001. "Flexible Simulated Moment Estimation Of Nonlinear Errors-In-Variables Models," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 616-627, November.
    25. Donald W.K. Andrews & Yoon-Jae Whang, 1989. "Additive Interactive Regression Models: Circumvention of the Curse of Dimensionality," Cowles Foundation Discussion Papers 925, Cowles Foundation for Research in Economics, Yale University.
    26. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    27. Oliver Linton & Mototsugu Shintani, 2003. "Nonparametric Neural Network Estimation of Lyapunov Exponents and a Direct Test for Chaos," STICERD - Econometrics Paper Series 455, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    28. Otsu, Taisuke, 2007. "Penalized empirical likelihood estimation of semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1923-1954, November.
    29. Bierens, H.J., 1989. "A consistent conditional moment test of functional form," Serie Research Memoranda 0064, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    30. Serge Darolles & Jean-Pierre Florens & Eric Renault, 2000. "Nonparametric Instrumental Regression," Working Papers 2000-17, Centre de Recherche en Economie et Statistique.
    31. Whitney K. Newey & James L. Powell & Francis Vella, 1998. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Working papers 98-6, Massachusetts Institute of Technology (MIT), Department of Economics.
    32. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, May.
    33. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, May.
    34. Lavergne, Pascal & Vuong, Quang H, 1996. "Nonparametric Selection of Regressors: The Nonnested Case," Econometrica, Econometric Society, vol. 64(1), pages 207-219, January.
    35. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    36. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.
    37. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
    38. Newey, W.K., 1989. "Efficient Instrumental Variables Estimation Of Nonlinear Models," Papers 341, Princeton, Department of Economics - Econometric Research Program.
    39. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    40. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
    41. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 497-517.
    42. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    43. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, May.
    44. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    45. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    46. Heckman, James J & Willis, Robert J, 1977. "A Beta-logistic Model for the Analysis of Sequential Labor Force Participation by Married Women," Journal of Political Economy, University of Chicago Press, vol. 85(1), pages 27-58, February.
    47. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
    48. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    49. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, 05.
    50. Richard Blundell & Alan Duncan & Krishna Pendakur, 1998. "Semiparametric estimation and consumer demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(5), pages 435-461.
    51. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, May.
    52. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74 Elsevier.
    53. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    54. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    55. Wooldridge, Jeffrey M., 1992. "A Test for Functional Form Against Nonparametric Alternatives," Econometric Theory, Cambridge University Press, vol. 8(04), pages 452-475, December.
    56. Huang, Jianhua Z., 1998. "Functional ANOVA Models for Generalized Regression," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 49-71, October.
    57. Klein, R.W. & Spady, R.H., 1991. "An Efficient Semiparametric Estimator for Binary Response Models," Papers 70, Bell Communications - Economic Research Group.
    58. de Jong, Robert M., 1996. "The Bierens test under data dependence," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 1-32.
    59. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    60. Duncan, Gregory M., 1986. "A semi-parametric censored regression estimator," Journal of Econometrics, Elsevier, vol. 32(1), pages 5-34, June.
    61. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    62. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    63. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2001. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," CIRJE F-Series CIRJE-F-124, CIRJE, Faculty of Economics, University of Tokyo.
    64. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    65. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    66. Martin S. Eichenbaum & Lars Peter Hansen, 1987. "Estimating Models with Intertemporal Substitution Using Aggregate Time Series Data," NBER Working Papers 2181, National Bureau of Economic Research, Inc.
    67. Werner Ploberger & Peter C. B. Phillips, 2003. "An Introduction to Best Empirical Models when the Parameter Space is Infinite Dimensional," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 877-890, December.
    68. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    69. John Y. Campbell & John H. Cochrane, 1995. "By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," NBER Working Papers 4995, National Bureau of Economic Research, Inc.
    70. Joel L. Horowitz, 2007. "Asymptotic Normality Of A Nonparametric Instrumental Variables Estimator," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1329-1349, November.
    71. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    72. Guido W. Imbens & Whitney Newey & Geert Ridder, 2006. "Mean-squared-error Calculations for Average Treatment Effects," IEPR Working Papers 06.57, Institute of Economic Policy Research (IEPR).
    73. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    74. Chapman, D.A., 1996. "Approximating the Asset Pricing Kernel," Papers 96-02, Rochester, Business - Financial Research and Policy Studies.
    75. Bansal, Ravi & Hsieh, David A & Viswanathan, S, 1993. " A New Approach to International Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 48(5), pages 1719-1747, December.
    76. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    77. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
    78. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    79. Newey, W.K., 1989. "Uniform Convergence In Probability And Stochastic Equicontinuity," Papers 342, Princeton, Department of Economics - Econometric Research Program.
    80. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    81. G. Constantinides, 1990. "Habit formation: a resolution of the equity premium puzzle," Levine's Working Paper Archive 1397, David K. Levine.
    82. Xiaohong Chen & Yanqin Fan & Victor Tsyrennifov, 2004. "Efficient Estimation of Semiparametric Multivariate Copula Models," Vanderbilt University Department of Economics Working Papers 0420, Vanderbilt University Department of Economics.
    83. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    84. Newey, Whitney K., 1994. "Series Estimation of Regression Functionals," Econometric Theory, Cambridge University Press, vol. 10(01), pages 1-28, March.
    85. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(01), pages 1-31, February.
    86. Andrews, Donald W. K., 1991. "Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 359-377, February.
    87. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    88. Yingyao Hu & Susanne Schennach, 2006. "Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments," CeMMAP working papers CWP17/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    89. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    90. Gallant, A. Ronald & Souza, Geraldo, 1991. "On the asymptotic normality of Fourier flexible form estimates," Journal of Econometrics, Elsevier, vol. 50(3), pages 329-353, December.
    91. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    92. Chen, Xiaohong & Fan, Yanqin, 1999. "Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series," Journal of Econometrics, Elsevier, vol. 91(2), pages 373-401, August.
    93. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    94. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    95. Hausman, J.A. & Newey, W.K., 1992. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Working papers 93-2, Massachusetts Institute of Technology (MIT), Department of Economics.
    96. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    97. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    98. Jian Zhang, 2003. "Sieve Empirical Likelihood and Extensions of the Generalized Least Squares," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 1-24.
    99. P. M. Robinson, 1989. "Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series," Review of Economic Studies, Oxford University Press, vol. 56(4), pages 511-534.
    100. de Jong, Robert M., 2002. "A note on "Convergence rates and asymptotic normality for series estimators": uniform convergence rates," Journal of Econometrics, Elsevier, vol. 111(1), pages 1-9, November.
    101. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    102. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    103. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    104. Herman J. Bierens & Jose R. Carvalho, 2007. "Semi-nonparametric competing risks analysis of recidivism," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 971-993.
    105. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
    106. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-782, May.
    107. Yoshihiko Nishiyama & Peter M Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," STICERD - Econometrics Paper Series 483, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    108. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    109. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The bootstrap and the Edgeworth correction for semiparametric averaged derivatives," LSE Research Online Documents on Economics 2297, London School of Economics and Political Science, LSE Library.
    110. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    111. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    112. Elbadawi, Ibrahim & Gallant, A Ronald & Souza, Geraldo, 1983. "An Elasticity Can Be Estimated Consistently without A Priori Knowledge of Functional Form," Econometrica, Econometric Society, vol. 51(6), pages 1731-1751, November.
    113. Bo E. Honoré & Ekaterini Kyriazidou, 2000. "Panel Data Discrete Choice Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 68(4), pages 839-874, July.
    114. Bansal, Ravi & Viswanathan, S, 1993. " No Arbitrage and Arbitrage Pricing: A New Approach," Journal of Finance, American Finance Association, vol. 48(4), pages 1231-1262, September.
    115. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    116. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, May.
    117. Chen, Xiaoheng & Conley, Timothy G., 2001. "A new semiparametric spatial model for panel time series," Journal of Econometrics, Elsevier, vol. 105(1), pages 59-83, November.
    118. Zongwu Cai & Jianqing Fan & Qiwei Yao, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:6b-76. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.