IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Regularizing priors for linear inverse problems

  • Florens, Jean-Pierre
  • Simoni, Anna
Registered author(s):

    We consider statistical linear inverse problems in Hilbert spaces of the type ˆ Y = Kx + U where we want to estimate the function x from indirect noisy functional observations ˆY . In several applications the operator K has an inverse that is not continuous on the whole space of reference; this phenomenon is known as ill-posedness of the inverse problem. We use a Bayesian approach and a conjugate-Gaussian model. For a very general specification of the probability model the posterior distribution of x is known to be inconsistent in a frequentist sense. Our first contribution consists in constructing a class of Gaussian prior distributions on x that are shrinking with the measurement error U and we show that, under mild conditions, the corresponding posterior distribution is consistent in a frequentist sense and converges at the optimal rate of contraction. Then, a class ^ of posterior mean estimators for x is given. We propose an empirical Bayes procedure for selecting an estimator in this class that mimics the posterior mean that has the smallest risk on the true x.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Full text
    Download Restriction: no

    Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 621.

    in new window

    Date of creation: 2010
    Date of revision:
    Handle: RePEc:ide:wpaper:22814
    Contact details of provider: Postal:
    Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE

    Phone: +33 (0)5 61 12 85 89
    Fax: + 33 (0)5 61 12 86 37
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:22814. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.