IDEAS home Printed from https://ideas.repec.org/p/ide/wpaper/22814.html

Regularizing priors for linear inverse problems

Author

Listed:
  • Florens, Jean-Pierre
  • Simoni, Anna

Abstract

We consider statistical linear inverse problems in Hilbert spaces of the type ˆ Y = Kx + U where we want to estimate the function x from indirect noisy functional observations ˆY . In several applications the operator K has an inverse that is not continuous on the whole space of reference; this phenomenon is known as ill-posedness of the inverse problem. We use a Bayesian approach and a conjugate-Gaussian model. For a very general specification of the probability model the posterior distribution of x is known to be inconsistent in a frequentist sense. Our first contribution consists in constructing a class of Gaussian prior distributions on x that are shrinking with the measurement error U and we show that, under mild conditions, the corresponding posterior distribution is consistent in a frequentist sense and converges at the optimal rate of contraction. Then, a class ^ of posterior mean estimators for x is given. We propose an empirical Bayes procedure for selecting an estimator in this class that mimics the posterior mean that has the smallest risk on the true x.

Suggested Citation

  • Florens, Jean-Pierre & Simoni, Anna, 2010. "Regularizing priors for linear inverse problems," IDEI Working Papers 621, Institut d'Économie Industrielle (IDEI), Toulouse.
  • Handle: RePEc:ide:wpaper:22814
    as

    Download full text from publisher

    File URL: https://tse-fr.eu/sites/default/files/medias/doc/wp/2010/wp_idei_621.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    2. Dong Yan & Shota Gugushvili & Aad Vaart, 2024. "Bayesian Linear Inverse Problems in Regularity Scales with Discrete Observations," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 228-254, November.
    3. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    4. Natalia Bochkina & Jenovah Rodrigues, 2023. "Bayesian inverse problems with heterogeneous variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1116-1151, September.
    5. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    6. Jan Johannes & Anna Simoni & Rudolf Schenk, 2020. "Adaptive Bayesian Estimation in Indirect Gaussian Sequence Space Models," Annals of Economics and Statistics, GENES, issue 137, pages 83-116.
    7. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    8. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    9. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:22814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/idtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.