IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2012019.html
   My bibliography  Save this paper

Regularization of nonparametric frontier estimators

Author

Listed:
  • Daouia, Abdelaati
  • Florens, Jean-Pierre
  • Simar, Leopold

Abstract

In production theory and efficiency analysis, we are interested in estimating the production frontier which is the locus of the maximal attainable level of an output (the production), given a set of inputs (the production factors). In other setups, we are rather willing to estimate an input (or cost) frontier that is defined as the minimal level of the input (cost) attainable for a given set of outputs (goods or services produced). In both cases the problem can be viewed as estimating a surface under shape constraints (monotonicity, . . . ). In this paper we derive the theory of an estimator of the frontier having an asymptotic normal distribution. The basic tool is the order-m partial frontier where we let the order m to converge to infinity when n ! 1 but at a slow rate. The final estimator is then corrected for its inherent bias. We thus can view our estimator as a regularized frontier estimator which, in addition, is more robust to extreme values and outliers than the usual nonparametric frontier estimators, like FDH. The performances of our estimators are evaluated in finite samples through some Monte-Carlo experiments. We illustrate also how to provide, in an easy way, confidence intervals for the frontier function both with a simulated data set and a real data set.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Leopold, 2012. "Regularization of nonparametric frontier estimators," LIDAM Reprints ISBA 2012019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2012019
    Note: In : Journal of Econometrics, vol. 168, no. 2, p. 285-299 (2012)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    2. Simar, Léopold & Wilson, Paul W., 2013. "Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives," Foundations and Trends(R) in Econometrics, now publishers, vol. 5(3–4), pages 183-337, June.
    3. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    4. Daouia, Abdelaati & Gijbels, Irène, 2011. "Robustness and inference in nonparametric partial frontier modeling," Journal of Econometrics, Elsevier, vol. 161(2), pages 147-165, April.
    5. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    6. Daouia, Abdelaati & Simar, Léopold, 2005. "Robust nonparametric estimators of monotone boundaries," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 311-331, October.
    7. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    8. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    9. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    10. repec:hal:journl:peer-00796744 is not listed on IDEAS
    11. Abdelaati Daouia & Irène Gijbels, 2011. "Robustness and inference in nonparametric partial-frontier modeling," Post-Print hal-00796744, HAL.
    12. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    2. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    3. Daraio, Cinzia & Simar, Léopold, 2024. "Approximations and inference for envelopment estimators of production frontiers," LIDAM Reprints ISBA 2024026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    5. Calogero Guccio & Marco Martorana & Isidoro Mazza & Giacomo Pignataro & Ilde Rizzo, 2019. "An analysis of the efficiency of Italian museums using a generalised conditional efficiency model," ACEI Working Paper Series AWP-06-2019, Association for Cultural Economics International, revised Dec 2019.
    6. Calogero Guccio & Marco Martorana & Isidoro Mazza & Giacomo Pignataro & Ilde Rizzo, 2020. "An analysis of the efficiency of Italian museums using a generalised conditional efficiency model," ACEI Working Paper Series AWP-06-2020, Association for Cultural Economics International, revised Feb 2020.
    7. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    8. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    9. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    10. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
    11. Florens, Jean-Pierre & Schwarz, Maik & Van Bellegem, Sébastien, 2010. "Nonparametric Frontier Estimation from Noisy Data," TSE Working Papers 10-179, Toulouse School of Economics (TSE).
    12. Cazals, Catherine & Fève, Frédérique & Florens, Jean-Pierre & Simar, Léopold, 2016. "Nonparametric instrumental variables estimation for efficiency frontier," Journal of Econometrics, Elsevier, vol. 190(2), pages 349-359.
    13. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    14. Cinzia Daraio & Léopold Simar, 2024. "Approximations and inference for envelopment estimators of production frontiers," Journal of Productivity Analysis, Springer, vol. 62(2), pages 197-215, October.
    15. Camilla Mastromarco & Léopold Simar, 2021. "Latent heterogeneity to evaluate the effect of human capital on world technology frontier," Journal of Productivity Analysis, Springer, vol. 55(2), pages 71-89, April.
    16. Calogero Guccio & Domenico Lisi & Marco Martorana & Anna Mignosa, 2017. "On the role of cultural participation in tourism destination performance: an assessment using robust conditional efficiency approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 41(2), pages 129-154, May.
    17. Cinzia Daraio & Leopold Simar, 2022. "Approximations and Inference for Nonparametric Production Frontiers," LEM Papers Series 2022/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    19. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    20. Mastromarco, Camilla & Simar, Leopold, 2017. "Cross-Section Dependence and Latent Heterogeneity to Evaluate the Impact of Human Capital on Country Performance," LIDAM Discussion Papers ISBA 2017030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    22. Song, Junmo & Oh, Dong-hyun & Kang, Jiwon, 2017. "Robust estimation in stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 243-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    2. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
    3. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    4. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    5. Diogo Cunha Ferreira & Rui Cunha Marques & Maria Isabel Pedro & Carolina Amaral, 2020. "Economic Inefficiency Levels of Urban Solid Waste Management Services in Portugal," Sustainability, MDPI, vol. 12(10), pages 1-29, May.
    6. Jose M. Cordero & Francisco Pedraja-Chaparro & Elsa C. Pisaflores & Cristina Polo, 2017. "Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach," Journal of Productivity Analysis, Springer, vol. 48(1), pages 1-24, August.
    7. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    8. Frédérique Fève & Jean-Pierre Florens & Léopold Simar, 2023. "Proportional incremental cost probability functions and their frontiers," Empirical Economics, Springer, vol. 64(6), pages 2721-2756, June.
    9. Bao Hoang Nguyen & Valentin Zelenyuk, 2020. "Robust efficiency analysis of public hospitals in Queensland, Australia," CEPA Working Papers Series WP052020, School of Economics, University of Queensland, Australia.
    10. Mastromarco, Camilla & Simar, Léopold & Van Keilegom, Ingrid, 2022. "Estimating Nonparametric Conditional Frontiers and Efficiencies: A New Approach," LIDAM Discussion Papers ISBA 2022035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Wilson, Paul W., 2018. "Dimension reduction in nonparametric models of production," European Journal of Operational Research, Elsevier, vol. 267(1), pages 349-367.
    12. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    13. Abdelaati Daouia & Byeong U. Park, 2013. "On Projection-type Estimators of Multivariate Isotonic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 363-386, June.
    14. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    15. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    16. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    17. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    18. Caitlin O’Loughlin & Léopold Simar & Paul W. Wilson, 2023. "Methodologies for assessing government efficiency," Chapters, in: António Afonso & João Tovar Jalles & Ana Venâncio (ed.), Handbook on Public Sector Efficiency, chapter 4, pages 72-101, Edward Elgar Publishing.
    19. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    20. Mastromarco, Camilla & Simar, Léopold, 2018. "Globalization and productivity: A robust nonparametric world frontier analysis," Economic Modelling, Elsevier, vol. 69(C), pages 134-149.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2012019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.