IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v37y2021i2p346-387_5.html

Robustified Expected Maximum Production Frontiers

Author

Listed:
  • Daouia, Abdelaati
  • Florens, Jean-Pierre
  • Simar, Léopold

Abstract

The aim of this paper is to construct a robust nonparametric estimator for the production frontier. We study this problem under a regression model with one-sided errors, where the regression function defines the achievable maximum output, for a given level of inputs-usage, and the regression error defines the inefficiency term. The main tool is a concept of partial regression boundary defined as a special probability-weighted moment. This concept motivates a robustified unconditional alternative to the pioneering class of nonparametric conditional expected maximum production functions. We prove that both the resulting benchmark partial frontier and its estimator share the desirable monotonicity of the true full frontier. We derive the asymptotic properties of the partial and full frontier estimators, and unravel their behavior from a robustness theory point of view. We provide numerical illustrations and Monte Carlo evidence that the presented concept of unconditional expected maximum production functions is more efficient and reliable in filtering out noise than the original conditional version. The methodology is very easy and fast to implement. Its usefulness is discussed through two concrete datasets from the sector of Delivery Services, where outliers are likely to affect the traditional conditional approach.

Suggested Citation

  • Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
  • Handle: RePEc:cup:etheor:v:37:y:2021:i:2:p:346-387_5
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466620000171/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    2. Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:37:y:2021:i:2:p:346-387_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.