IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v191y2024ics0167947323002001.html
   My bibliography  Save this article

Bayesian boundary trend filtering

Author

Listed:
  • Onizuka, Takahiro
  • Iwashige, Fumiya
  • Hashimoto, Shintaro

Abstract

Estimating boundary curves has many applications such as economics, climate science, and medicine. Bayesian trend filtering has been developed as one of locally adaptive smoothing methods to estimate the non-stationary trend of data. This paper develops a Bayesian trend filtering for estimating the boundary trend. To this end, the truncated multivariate normal working likelihood and global-local shrinkage priors based on the scale mixtures of normal distribution are introduced. In particular, well-known horseshoe prior for difference leads to locally adaptive shrinkage estimation for boundary trend. However, the full conditional distributions of the Gibbs sampler involve high-dimensional truncated multivariate normal distribution. To overcome the difficulty of sampling, an approximation of truncated multivariate normal distribution is employed. Using the approximation, the proposed models lead to an efficient Gibbs sampling algorithm via the Pólya-Gamma data augmentation. The proposed method is also extended by considering a nearly isotonic constraint. The performance of the proposed method is illustrated through some numerical experiments and real data examples.

Suggested Citation

  • Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323002001
    DOI: 10.1016/j.csda.2023.107889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002001
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    2. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    3. Daouia, Abdelaati & Simar, Léopold, 2005. "Robust nonparametric estimators of monotone boundaries," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 311-331, October.
    4. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    5. Nicholas Syring & Ryan Martin, 2019. "Calibrating general posterior credible regions," Biometrika, Biometrika Trust, vol. 106(2), pages 479-486.
    6. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2021. "Robustified Expected Maximum Production Frontiers," Econometric Theory, Cambridge University Press, vol. 37(2), pages 346-387, April.
    7. Hall P. & Simar L., 2002. "Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 523-534, June.
    8. Daouia, Abdelaati & Noh, Hohsuk & Park, Byeong U., 2016. "Data envelope fitting with constrained polynomial splines," LIDAM Reprints ISBA 2016011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    10. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    11. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    12. Reiß, Markus & Schmidt-Hieber, Johannes, 2020. "Posterior contraction rates for support boundary recovery," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6638-6656.
    13. Abdelaati Daouia & Hohsuk Noh & Byeong U. Park, 2016. "Data envelope fitting with constrained polynomial splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 3-30, January.
    14. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    15. N. G. Polson & J. G. Scott, 2013. "Data augmentation for non-Gaussian regression models using variance-mean mixtures," Biometrika, Biometrika Trust, vol. 100(2), pages 459-471.
    16. Oscar Hernan Madrid Padilla & Sabyasachi Chatterjee, 2022. "Risk bounds for quantile trend filtering [-penalized quantile regression in high-dimensional sparse models]," Biometrika, Biometrika Trust, vol. 109(3), pages 751-768.
    17. Patricio Aceituno & Maríadel Prieto & María Solari & Alejandra Martínez & Germán Poveda & Mark Falvey, 2009. "The 1877–1878 El Niño episode: associated impacts in South America," Climatic Change, Springer, vol. 92(3), pages 389-416, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    2. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    3. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    4. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    5. Natalie Neumeyer & Leonie Selk & Charles Tillier, 2020. "Semi-parametric transformation boundary regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1287-1315, December.
    6. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    7. Daouia, Abdelaati & Girard, Stéphane & Guillou, Armelle, 2014. "A Γ-moment approach to monotonic boundary estimation," Journal of Econometrics, Elsevier, vol. 178(2), pages 727-740.
    8. Nicholas G. Polson & James G. Scott, 2016. "Mixtures, envelopes and hierarchical duality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 701-727, September.
    9. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Oct 2024.
    10. Ryan Martin & Bo Ning, 2020. "Empirical Priors and Coverage of Posterior Credible Sets in a Sparse Normal Mean Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 477-498, August.
    11. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    12. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    13. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Paper series 20-09, Rimini Centre for Economic Analysis.
    14. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    15. Abdelaati Daouia & Byeong U. Park, 2013. "On Projection-type Estimators of Multivariate Isotonic Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 363-386, June.
    16. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    17. Krüger, Jens J., 2012. "A Monte Carlo study of old and new frontier methods for efficiency measurement," European Journal of Operational Research, Elsevier, vol. 222(1), pages 137-148.
    18. Moragues, Raul & Aparicio, Juan & Esteve, Miriam, 2023. "An unsupervised learning-based generalization of Data Envelopment Analysis," Operations Research Perspectives, Elsevier, vol. 11(C).
    19. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    20. Ando, Tomohiro & Bai, Jushan & Li, Kunpeng, 2022. "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 230(1), pages 20-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323002001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.