IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/27752.html
   My bibliography  Save this paper

Data envelope fitting with constrained polynomial splines

Author

Listed:
  • Daouia, Abdelaati
  • Noh, Hohsuk
  • Park, Byeong U.

Abstract

Estimation of support frontiers and boundaries often involves monotone and/or concave edge data smoothing. This estimation problem arises in various unrelated contexts, such as optimal cost and production assessments in econometrics and master curve prediction in the reliability programs of nuclear reactors. Very few constrained esti- mators of the support boundary of a bivariate distribution have been introduced in the literature. They are based on simple envelopment techniques which often suffer from lack of precision and smoothness. Combining the edge estimation idea of Hall, Park and Stern with the quadratic spline smoothing method of He and Shi, we develop a novel constrained fit of the boundary curve which benefits from the smoothness of spline approximation and the computational efficiency of linear programs. Using cubic splines is also feasible and more attractive under multiple shape constraints; computing the optimal spline smoother is then formulated into a second-order cone programming problem. Both constrained quadratic and cubic spline frontiers have a similar level of computational complexity to the unconstrained fits and inherit their asymptotic properties. The utility of this method is illustrated through applications to some real datasets and simulation evidence is also presented to show its superiority over the best known methods.

Suggested Citation

  • Daouia, Abdelaati & Noh, Hohsuk & Park, Byeong U., 2013. "Data envelope fitting with constrained polynomial splines," TSE Working Papers 13-449, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:27752
    as

    Download full text from publisher

    File URL: http://www.tse-fr.eu/sites/default/files/medias/doc/wp/etrie/wp_tse_449.pdf
    File Function: Full text
    Download Restriction: no

    File URL: http://www.tse-fr.eu/sites/default/files/medias/doc/by/daouia/daouia_noh_park_jrssb_r2.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    3. Stéphane Girard & Pierre Jacob, 2003. "Extreme Values and Haar Series Estimates of Point Process Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 369-384, June.
    4. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    5. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    6. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    7. Christophe Croux & Irène Gijbels & Ilaria Prosdocimi, 2012. "Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models," Biometrics, The International Biometric Society, vol. 68(1), pages 31-44, March.
    8. Hall, Peter & Nussbaum, Michael & Stern, Steven E., 1997. "On the Estimation of a Support Curve of Indeterminate Sharpness," Journal of Multivariate Analysis, Elsevier, vol. 62(2), pages 204-232, August.
    9. Hwang, J. H. & Park, B. U. & Ryu, W., 2002. "Limit theorems for boundary function estimators," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 353-360, October.
    10. Hazelton, Martin L. & Turlach, Berwin A., 2011. "Semiparametric regression with shape-constrained penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2871-2879, October.
    11. Kevin Murray & Samuel Müller & Berwin Turlach, 2013. "Revisiting fitting monotone polynomials to data," Computational Statistics, Springer, vol. 28(5), pages 1989-2005, October.
    12. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," TSE Working Papers 10-165, Toulouse School of Economics (TSE).
    13. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    14. Hall, Peter & Park, Byeong U. & Stern, Steven E., 1998. "On Polynomial Estimators of Frontiers and Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 71-98, July.
    15. Korostelev, A. P. & Simar, L. & Tsybakov, A. B., 1995. "Estimation of monotone boundaries," LIDAM Reprints CORE 1178, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Hardle, W. & Park, B. U. & Tsybakov, A. B., 1995. "Estimation of Non-sharp Support Boundaries," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 205-218, November.
    17. S.‐O. Jeong & B. U. Park, 2006. "Large Sample Approximation of the Distribution for Convex‐Hull Estimators of Boundaries," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 139-151, March.
    18. Park, B.U. & Jeong, S.-O. & Simar, L., 2010. "Asymptotic distribution of conical-hull estimators of directional edges," LIDAM Reprints ISBA 2010025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Ranking the Importance of Variables in a Nonparametric Frontier Analysis Using Unsupervised Machine Learning Techniques," Mathematics, MDPI, vol. 11(11), pages 1-24, June.
    2. Natalie Neumeyer & Leonie Selk & Charles Tillier, 2020. "Semi-parametric transformation boundary regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1287-1315, December.
    3. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    4. Raul Moragues & Juan Aparicio & Miriam Esteve, 2023. "Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study," Operational Research, Springer, vol. 23(3), pages 1-33, September.
    5. España, Victor J. & Aparicio, Juan & Barber, Xavier & Esteve, Miriam, 2024. "Estimating production functions through additive models based on regression splines," European Journal of Operational Research, Elsevier, vol. 312(2), pages 684-699.
    6. Moragues, Raul & Aparicio, Juan & Esteve, Miriam, 2023. "An unsupervised learning-based generalization of Data Envelopment Analysis," Operations Research Perspectives, Elsevier, vol. 11(C).
    7. Onizuka, Takahiro & Iwashige, Fumiya & Hashimoto, Shintaro, 2024. "Bayesian boundary trend filtering," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Stéphane & Jacob, Pierre, 2008. "Frontier estimation via kernel regression on high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 403-420, March.
    2. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    3. Girard, Séphane & Jacob, Pierre, 2009. "Frontier estimation with local polynomials and high power-transformed data," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1691-1705, September.
    4. Cheng, Ming-Yen & Hall, Peter, 2006. "Methods for tracking support boundaries with corners," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1870-1893, September.
    5. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    6. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2009. "Frontier Estimation and Extreme Values Theory," IDEI Working Papers 611, Institut d'Économie Industrielle (IDEI), Toulouse.
    7. Daouia, Abdelaati & Girard, Stéphane & Guillou, Armelle, 2014. "A Γ-moment approach to monotonic boundary estimation," Journal of Econometrics, Elsevier, vol. 178(2), pages 727-740.
    8. Girard, Stéphane & Guillou, Armelle & Stupfler, Gilles, 2013. "Frontier estimation with kernel regression on high order moments," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 172-189.
    9. Leonie Selk & Charles Tillier & Orlando Marigliano, 2022. "Multivariate boundary regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 400-426, March.
    10. Léopold Simar & Paul Wilson, 2011. "Inference by the m out of n bootstrap in nonparametric frontier models," Journal of Productivity Analysis, Springer, vol. 36(1), pages 33-53, August.
    11. Hall, Peter & Park, Byeong U., 2004. "Bandwidth choice for local polynomial estimation of smooth boundaries," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 240-261, November.
    12. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    13. Abdelaati Daouia & Léopold Simar & Paul W. Wilson, 2017. "Measuring firm performance using nonparametric quantile-type distances," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 156-181, March.
    14. Alois Kneip & Léopold Simar & Paul Wilson, 2011. "A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 483-515, November.
    15. Shiu, Alice & Zelenyuk, Valentin, 2009. "Production Efficiency versus Ownership: The Case of China," MPRA Paper 23760, University Library of Munich, Germany, revised 22 Mar 2010.
    16. Jeong, Seok-Oh & Park, Byeong U., 2004. "Limit Distribution of Convex-Hull Estimators of Boundaries," Papers 2004,39, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    17. Kneip, Alois & Simar, Léopold & Van Keilegom, Ingrid, 2015. "Frontier estimation in the presence of measurement error with unknown variance," Journal of Econometrics, Elsevier, vol. 184(2), pages 379-393.
    18. Daouia, Abdelaati & Florens, Jean-Pierre & Simar, Léopold, 2020. "Robust frontier estimation from noisy data: A Tikhonov regularization approach," Econometrics and Statistics, Elsevier, vol. 14(C), pages 1-23.
    19. Alois Kneip & Léopold Simar & Paul W. Wilson, 2016. "Testing Hypotheses in Nonparametric Models of Production," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 435-456, July.
    20. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:27752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.