IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Linearly interpolated FDH efficiency score for nonconvex frontiers

Listed author(s):
  • Jeong, Seok-Oh
  • Simar, Léopold

This paper addresses the problem of estimating the monotone boundary of a nonconvex set in a full nonparametric and multivariate setup. This is particularly useful in the context of productivity analysis where the efficient frontier is the locus of optimal production scenarios. Then efficiency scores are defined by the distance of a firm from this efficient boundary. In this setup, the free disposal hull (FDH) estimator has been extensively used due to its flexibility and because it allows nonconvex attainable production sets. However, the nonsmoothness and discontinuities of the FDH is a drawback for conducting inference in finite samples. In particular, it is shown that the bootstrap of the FDH has poor performances and so is not useful in practice. Our estimator, the LFDH, is a linearized version of the FDH, obtained by linear interpolation of appropriate FDH-efficient vertices. It offers a continuous, smooth version of the FDH. We provide an algorithm for computing the estimator, and we establish its asymptotic properties. We also provide an easy way to approximate its asymptotic sampling distribution. The latter could offer bias-corrected estimator and confidence intervals of the efficiency scores. In a Monte Carlo study, we show that these approximations work well even in moderate sample sizes and that our LFDH estimator outperforms, both in bias and in MSE, the original FDH estimator.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 97 (2006)
Issue (Month): 10 (November)
Pages: 2141-2161

in new window

Handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2141-2161
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
  2. Kneip, Alois & Park, Byeong U. & Simar, L opold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(06), pages 783-793, December.
  3. U. Park, Byeong, 2001. "On estimating the slope of increasing boundaries," Statistics & Probability Letters, Elsevier, vol. 52(1), pages 69-72, March.
  4. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(06), pages 855-877, December.
  5. Hwang, J. H. & Park, B. U. & Ryu, W., 2002. "Limit theorems for boundary function estimators," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 353-360, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:10:p:2141-2161. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.