IDEAS home Printed from https://ideas.repec.org/p/fth/louvis/9904.html
   My bibliography  Save this paper

Statistical Inference in Nonparametric Frontier Models: the State of the Art

Author

Listed:
  • Simar, L.
  • Wilson, P.W.

Abstract

The economic literature proposes several nonparametric frontier estimators based on the idea of enveloping the data (FDH and DEA-type estimators). Many have claimed that FDH and DEA techniques are non-statistical, as opposed to econometric approaches where particular parametric expressions are posited to model the frontier. We can now define a statistical model allowing determinion of the statistical properties of the non-parametric estimators in the multi-output and multi-input case. This paper summarizes the results wihic are now available, and provides a brief guide to the existing literature. Stressing the role of hypotheses and inference, we show how the results can be used or adapted for practical purposes.

Suggested Citation

  • Simar, L. & Wilson, P.W., 1999. "Statistical Inference in Nonparametric Frontier Models: the State of the Art," Papers 9904, Catholique de Louvain - Institut de statistique.
  • Handle: RePEc:fth:louvis:9904
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Wheelock, David C & Wilson, Paul W, 1995. "Explaining Bank Failures: Deposit Insurance, Regulation, and Efficiency," The Review of Economics and Statistics, MIT Press, vol. 77(4), pages 689-700, November.
    3. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    4. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    6. Gary Ferrier & Joseph Hirschberg, 1997. "Bootstrapping Confidence Intervals for Linear Programming Efficiency Scores: With an Illustration Using Italian Banking Data," Journal of Productivity Analysis, Springer, vol. 8(1), pages 19-33, March.
    7. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    2. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    3. Aggelopoulos, Eleftherios & Georgopoulos, Antonios, 2017. "Bank branch efficiency under environmental change: A bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1170-1188.
    4. C Murillo-Melchor & J M Pastor & E Tortosa-Ausina, 2010. "A bootstrap approach to analyse productivity growth in European banking," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(12), pages 1729-1745, December.
    5. Essid, Hédi & Ouellette, Pierre & Vigeant, Stéphane, 2010. "Measuring efficiency of Tunisian schools in the presence of quasi-fixed inputs: A bootstrap data envelopment analysis approach," Economics of Education Review, Elsevier, vol. 29(4), pages 589-596, August.
    6. Mette Asmild & Jens Hougaard & Dorte Kronborg, 2013. "Do efficiency scores depend on input mix? A statistical test and empirical illustration," Annals of Operations Research, Springer, vol. 211(1), pages 37-48, December.
    7. Tortosa-Ausina, Emili & Grifell-Tatje, Emili & Armero, Carmen & Conesa, David, 2008. "Sensitivity analysis of efficiency and Malmquist productivity indices: An application to Spanish savings banks," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1062-1084, February.
    8. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    9. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    10. Simar, Leopold & Wilson, Paul W., 2002. "Non-parametric tests of returns to scale," European Journal of Operational Research, Elsevier, vol. 139(1), pages 115-132, May.
    11. Kao, Chiang & Liu, Shiang-Tai, 2014. "Measuring performance improvement of Taiwanese commercial banks under uncertainty," European Journal of Operational Research, Elsevier, vol. 235(3), pages 755-764.
    12. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    13. Alexander Schiersch, 2013. "Firm size and efficiency in the German mechanical engineering industry," Small Business Economics, Springer, vol. 40(2), pages 335-350, February.
    14. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    15. Ohene-Asare, Kwaku & Turkson, Charles & Afful-Dadzie, Anthony, 2017. "Multinational operation, ownership and efficiency differences in the international oil industry," Energy Economics, Elsevier, vol. 68(C), pages 303-312.
    16. Aleksandra Parteka & Joanna Wolszczak-Derlacz, 2013. "Dynamics of productivity in higher education: cross-european evidence based on bootstrapped Malmquist indices," Journal of Productivity Analysis, Springer, vol. 40(1), pages 67-82, August.
    17. Richmond, J, 2001. "Slack and Net Technical Efficiency Measurement: A Bootstrap Approach," Economics Discussion Papers 8837, University of Essex, Department of Economics.
    18. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    19. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    20. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.

    More about this item

    Keywords

    ECONOMETRICS ; STATISTICAL ANALYSIS ; ESTIMATION OF PARAMETERS;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:louvis:9904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.