IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v27y2000i6p779-802.html
   My bibliography  Save this article

A general methodology for bootstrapping in non-parametric frontier models

Author

Listed:
  • Leopold Simar
  • Paul Wilson

Abstract

The Data Envelopment Analysis method has been extensively used in the literature to provide measures of firms' technical efficiency. These measures allow rankings of firms by their apparent performance. The underlying frontier model is non-parametric since no particular functional form is assumed for the frontier model. Since the observations result from some data-generating process, the statistical properties of the estimated efficiency measures are essential for their interpretations. In the general multi-output multi-input framework, the bootstrap seems to offer the only means of inferring these properties (i.e. to estimate the bias and variance, and to construct confidence intervals). This paper proposes a general methodology for bootstrapping in frontier models, extending the more restrictive method proposed in Simar & Wilson (1998) by allowing for heterogeneity in the structure of efficiency. A numerical illustration with real data is provided to illustrate the methodology.

Suggested Citation

  • Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
  • Handle: RePEc:taf:japsta:v:27:y:2000:i:6:p:779-802
    DOI: 10.1080/02664760050081951
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760050081951
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," CORE Discussion Papers 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fare,Rolf & Grosskopf,Shawna & Lovell,C. A. Knox, 2008. "Production Frontiers," Cambridge Books, Cambridge University Press, number 9780521072069, May.
    3. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    4. Kneip, A & Park, B-U & Simar, L, 1996. "A Note on the Convergence of Nonparametric DEA Efficiency Measures," Papers 9603, Catholique de Louvain - Institut de statistique.
    5. repec:cor:louvrp:-1139 is not listed on IDEAS
    6. SIMAR , Léopold, 1995. "Aspects of Statistical Analysis in DEA-Type Frontier Models," CORE Discussion Papers 1995061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    8. KNEIP, Alois & SIMAR, Léopold, 1995. "A General Framework for Frontier Estimation with Panel Data," CORE Discussion Papers 1995060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    10. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    11. repec:cor:louvrp:-571 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:27:y:2000:i:6:p:779-802. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.