IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Monte Carlo simulations of DEA efficiency measures and hypothesis tests

  • Kittelsen,S.A.C.

    (University of Oslo, Department of Economics)

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sv.uio.no/econ/english/research/unpublished-works/working-papers/pdf-files/1999/Memo-09-1999.pdf
Download Restriction: no

Paper provided by Oslo University, Department of Economics in its series Memorandum with number 09/1999.

as
in new window

Length:
Date of creation: 1999
Date of revision:
Handle: RePEc:hhs:osloec:1999_009
Contact details of provider: Postal: Department of Economics, University of Oslo, P.O Box 1095 Blindern, N-0317 Oslo, Norway
Phone: 22 85 51 27
Fax: 22 85 50 35
Web page: http://www.oekonomi.uio.no/indexe.htmlEmail:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tulkens, H. & Vanden Eeckaut, P., . "Non-frontier measures of efficiency, progress and regress for time series data," CORE Discussion Papers RP -1159, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
  3. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
  4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  5. Gijbels, Irène & Mammen, Enno & Park, Byeong U. & Simar, Léopold, 1998. "On estimation of monotone and concave frontier functions," SFB 373 Discussion Papers 1998,9, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  6. Simar, L. & Wilson, P.W., . "Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models," CORE Discussion Papers RP -1304, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
  8. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181, March.
  9. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
  10. KNEIP, Alois & PARK, Byeong U. & SIMAR, Léopold, 1996. "A Note on the Convergence of Nonparametric DEA Efficiency Measures," CORE Discussion Papers 1996039, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  11. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
  12. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  14. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
  15. Simar, Leopold & Wilson, Paul W., 2002. "Non-parametric tests of returns to scale," European Journal of Operational Research, Elsevier, vol. 139(1), pages 115-132, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:osloec:1999_009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Rhiana Bergh-Seeley)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.