IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/1304.html
   My bibliography  Save this paper

Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models

Author

Listed:
  • SIMAR, L.
  • WILSON, P.W.

Abstract

Efficiency scores of production units are generally measured relative to an estimated production frontier. Nonparametric estimators (DEA, FDH, ... ) are based on a finite sample of observed production units. The bootstrap is one easy way to analyze the sensitivity of efficiency scores relative to the sampling variations of the estimated frontier. The main point in order to validate the bootstrap is to define a reasonable data generating process in this complex framework and to propose a reasonable estimator of it. This provides a general methodology of bootstrapping in nonparametric frontier models. Some adapted methods are illustrated in analyzing the bootstrap sampling variations of input efficiency measures of electricity plants.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Simar, L. & Wilson, P.W., 1998. "Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models," LIDAM Reprints CORE 1304, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:1304
    DOI: 10.1287/mnsc.44.1.49
    Note: In : Management Science, 44 (1), 49-61, 1998
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.44.1.49
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.44.1.49?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grosskopf, S, 1986. "The Role of the Reference Technology in Measuring Productive Efficiency," Economic Journal, Royal Economic Society, vol. 96(382), pages 499-513, June.
    2. Fare, Rolf & Grosskopf, Shawna & Kokkelenberg, Edward C, 1989. "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 655-666, August.
    3. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Bruno De Borger & Kristiaan Kerstens & Diego Prior & Ignace Van de Woestyne, 2013. "Static efficiency decompositions and capacity utilization: integrating economic and technical capacity notions," Applied Economics, Taylor & Francis Journals, vol. 45(24), pages 3529-3529, August.
    3. Färe, Rolf & Karagiannis, Giannis, 2017. "The denominator rule for share-weighting aggregation," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1175-1180.
    4. Førsund, Finn R. & Kittelsen, Sverre A. C., 1998. "Productivity development of Norwegian electricity distribution utilities," Resource and Energy Economics, Elsevier, vol. 20(3), pages 207-224, September.
    5. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    6. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    7. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    8. Simar, Leopold & Wilson, Paul W., 2002. "Non-parametric tests of returns to scale," European Journal of Operational Research, Elsevier, vol. 139(1), pages 115-132, May.
    9. Roxani Karagiannis, 2015. "A system-of-equations two-stage DEA approach for explaining capacity utilization and technical efficiency," Annals of Operations Research, Springer, vol. 227(1), pages 25-43, April.
    10. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2019. "Plant Capacity and Attainability: Exploration and Remedies," Operations Research, INFORMS, vol. 67(4), pages 1135-1149, July.
    11. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    12. Kao, Chiang & Liu, Shiang-Tai, 2014. "Measuring performance improvement of Taiwanese commercial banks under uncertainty," European Journal of Operational Research, Elsevier, vol. 235(3), pages 755-764.
    13. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    14. repec:lan:wpaper:4471 is not listed on IDEAS
    15. Banker, Rajiv & Natarajan, Ram & Zhang, Daqun, 2019. "Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using Data Envelopment Analysis: Second stage OLS versus bootstrap approaches," European Journal of Operational Research, Elsevier, vol. 278(2), pages 368-384.
    16. Chen, Zhenling & Zhao, Weigang & Zheng, Heyun, 2021. "Potential output gap in China's regional coal-fired power sector under the constraint of carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    17. Kyoji Fukao & Victoria Kravtsova & Kentaro Nakajima, 2014. "How important is geographical agglomeration to factory efficiency in Japan’s manufacturing sector?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 659-696, May.
    18. Jaume Puig, 1999. "Radial measures of public services deficit for regional allocation of public funds," Working Papers, Research Center on Health and Economics 439, Department of Economics and Business, Universitat Pompeu Fabra.
    19. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    20. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    21. Mette Asmild & Jens Leth Hougaard & Dorte Kronborg, 2011. "Does the distribution of efficiency scores depend on the input mix?," MSAP Working Paper Series 03_2011, University of Copenhagen, Department of Food and Resource Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:1304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.