IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v13y2000i1p49-78.html
   My bibliography  Save this article

Statistical Inference in Nonparametric Frontier Models: The State of the Art

Author

Listed:
  • Léopold Simar
  • Paul Wilson

Abstract

Efficiency scores of firms are measured by their distance to an estimated production frontier. The economic literature proposes several nonparametric frontier estimators based on the idea of enveloping the data (FDH and DEA-type estimators). Many have claimed that FDH and DEA techniques are non-statistical, as opposed to econometric approaches where particular parametric expressions are posited to model the frontier. We can now define a statistical model allowing determination of the statistical properties of the nonparametric estimators in the multi-output and multi-input case. New results provide the asymptotic sampling distribution of the FDH estimator in a multivariate setting and of the DEA estimator in the bivariate case. Sampling distributions may also be approximated by bootstrap distributions in very general situations. Consequently, statistical inference based on DEA/FDH-type estimators is now possible. These techniques allow correction for the bias of the efficiency estimators and estimation of confidence intervals for the efficiency measures. This paper summarizes the results which are now available, and provides a brief guide to the existing literature. Emphasizing the role of hypotheses and inference, we show how the results can be used or adapted for practical purposes. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
  • Handle: RePEc:kap:jproda:v:13:y:2000:i:1:p:49-78 DOI: 10.1023/A:1007864806704
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1007864806704
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Wheelock, David C & Wilson, Paul W, 1995. "Explaining Bank Failures: Deposit Insurance, Regulation, and Efficiency," The Review of Economics and Statistics, MIT Press, vol. 77(4), pages 689-700, November.
    3. Kneip, Alois & Park, Byeong U. & Simar, L opold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(06), pages 783-793, December.
    4. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, pages 459-471.
    5. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, pages 49-61.
    6. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, pages 49-61.
    7. Gary Ferrier & Joseph Hirschberg, 1997. "Bootstrapping Confidence Intervals for Linear Programming Efficiency Scores: With an Illustration Using Italian Banking Data," Journal of Productivity Analysis, Springer, vol. 8(1), pages 19-33, March.
    8. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, pages 1265-1273.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    DEA; FDH; Nonparametric estimation; Efficiency; Frontier models; Bootstrapping;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:13:y:2000:i:1:p:49-78. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.