IDEAS home Printed from
   My bibliography  Save this article

How to improve the performances of DEA/FDH estimators in the presence of noise?


  • Léopold Simar


In frontier analysis, most of the nonparametric approaches (DEA, FDH) are based on envelopment ideas which suppose that with probability one, all the observed units belong to the attainable set. In these "deterministic" frontier models, statistical theory is now mostly available. In the presence of noise, this is no more true and envelopment estimators could behave dramatically since they are very sensitive to extreme observations that could result only from noise. DEA/FDH techniques would provide estimators with an error of the order of the standard deviation of the noise. In this paper we propose to adapt some recent results on detecting change points, to improve the performances of the classical DEA/FDH estimators in the presence of noise. We show by simulated examples that the procedure works well when the noise is of moderate size, in term of noise to signal ratio. It turns out that the procedure is also robust to outliers.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
  • Handle: RePEc:kap:jproda:v:28:y:2007:i:3:p:183-201
    DOI: 10.1007/s11123-007-0057-3

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
    3. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    4. GIJBELS, Irène & MAMMEN, Enno & PARK, Byeong U. & SIMAR, Léopold, 1997. "On estimation of monotone and concave frontier functions," LIDAM Discussion Papers CORE 1997031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    6. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    7. Atkinson, Scott E. & Primont, Daniel, 2002. "Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions," Journal of Econometrics, Elsevier, vol. 108(2), pages 203-225, June.
    8. Fare,Rolf & Grosskopf,Shawna & Lovell,C. A. Knox, 2008. "Production Frontiers," Cambridge Books, Cambridge University Press, number 9780521072069, May.
    9. Tsybakov, A.B. & Korostelev, A.P. & Simar, L., 1992. "Efficient Estimation of Monotone Boundaries," Papers 9209, Catholique de Louvain - Institut de statistique.
    10. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    11. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    12. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    13. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    14. Cinzia Daraio & Léopold Simar, 2005. "Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach," Journal of Productivity Analysis, Springer, vol. 24(1), pages 93-121, September.
    15. Kneip, Alois & Park, Byeong U. & Simar, Léopold, 1998. "A Note On The Convergence Of Nonparametric Dea Estimators For Production Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 14(6), pages 783-793, December.
    16. Shawna Grosskopf & Kathy J. Hayes & Lori L. Taylor & William L. Weber, 1997. "Budget-Constrained Frontier Measures Of Fiscal Equality And Efficiency In Schooling," The Review of Economics and Statistics, MIT Press, vol. 79(1), pages 116-124, February.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    19. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    20. KNEIP, Alois & SIMAR, Léopold, 1995. "A General Framework for Frontier Estimation with Panel Data," LIDAM Discussion Papers CORE 1995060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    22. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    24. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    4. Wheelock, David C. & Wilson, Paul W., 2008. "Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 209-225, July.
    5. Gilbert, R. Alton & Wheelock, David C. & Wilson, Paul W., 2004. "New evidence on the Fed's productivity in providing payments services," Journal of Banking & Finance, Elsevier, vol. 28(9), pages 2175-2190, September.
    6. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    7. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    8. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    9. Léopold Simar & Valentin Zelenyuk, 2007. "Statistical inference for aggregates of Farrell-type efficiencies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1367-1394.
    10. Thierry Post & Laurens Cherchye & Timo Kuosmanen, 2002. "Nonparametric Efficiency Estimation In Stochastic Environments," Operations Research, INFORMS, vol. 50(4), pages 645-655, August.
    11. Seok-Oh Jeong & Byeong Park & Léopold Simar, 2010. "Nonparametric conditional efficiency measures: asymptotic properties," Annals of Operations Research, Springer, vol. 173(1), pages 105-122, January.
    12. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    13. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    14. Ghulam, Yaseen & Jaffry, Shabbar, 2015. "Efficiency and productivity of the cement industry: Pakistani experience of deregulation and privatisation," Omega, Elsevier, vol. 54(C), pages 101-115.
    15. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.
    16. Maria Nieswand & Stefan Seifert, 2016. "Operational Conditions in Regulatory Benchmarking Models: A Monte Carlo Analysis," Discussion Papers of DIW Berlin 1585, DIW Berlin, German Institute for Economic Research.
    17. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, December.
    18. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    19. O’Loughlin, Caitlin & Simar, Léopold & Wilson, Paul, 2021. "Methodologies for assessing government efficiency," LIDAM Discussion Papers ISBA 2021002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.

    More about this item


    Frontier; Nonparametric estimation; Stochastic DEA/FDH; Robustness to outliers; C13; C14; D20;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D20 - Microeconomics - - Production and Organizations - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:28:y:2007:i:3:p:183-201. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.