IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation

  • Keshvari, Abolfazl
  • Kuosmanen, Timo

Isotonic nonparametric least squares (INLS) is a regression method for estimating a monotonic function by fitting a step function to data. In the literature of frontier estimation, the free disposal hull (FDH) method is similarly based on the minimal assumption of monotonicity. In this paper, we link these two separately developed nonparametric methods by showing that FDH is a sign-constrained variant of INLS. We also discuss the connections to related methods such as data envelopment analysis (DEA) and convex nonparametric least squares (CNLS). Further, we examine alternative ways of applying isotonic regression to frontier estimation, analogous to corrected and modified ordinary least squares (COLS/MOLS) methods known in the parametric stream of frontier literature. We find that INLS is a useful extension to the toolbox of frontier estimation both in the deterministic and stochastic settings. In the absence of noise, the corrected INLS (CINLS) has a higher discriminating power than FDH. In the case of noisy data, we propose to apply the method of non-convex stochastic envelopment of data (non-convex StoNED), which disentangles inefficiency from noise based on the skewness of the INLS residuals. The proposed methods are illustrated by means of simulated examples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0377221713004748
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 231 (2013)
Issue (Month): 2 ()
Pages: 481-491

as
in new window

Handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:481-491
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
  2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  3. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-68, October.
  4. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
  5. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(06), pages 855-877, December.
  6. KERSTENS, Kristiaan & VANDEN EECKAUT, Philippe, 1997. "Estimating returns to scale using nonparametric deterministic technologies : a new method based on goodness-of-fit," CORE Discussion Papers 1997013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
  8. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
  9. Léopold Simar & Paul Wilson, 2000. "Statistical Inference in Nonparametric Frontier Models: The State of the Art," Journal of Productivity Analysis, Springer, vol. 13(1), pages 49-78, January.
  10. H. Leleu, 2006. "A linear programming framework for free disposal hull technologies and cost functions: primal and dual models," Post-Print hal-00204497, HAL.
  11. Jürgen Hansohm & Xiaomi Hu, 2012. "A convergent algorithm for a generalized multivariate isotonic regression problem," Statistical Papers, Springer, vol. 53(1), pages 107-115, February.
  12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
  13. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, 07.
  14. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
  15. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, 03.
  16. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-98, October.
  17. Rajiv D. Banker, 1993. "Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation," Management Science, INFORMS, vol. 39(10), pages 1265-1273, October.
  18. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
  19. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  20. Antonio Peyrache & Tim Coelli, 2008. "Testing procedures for detection of linear dependencies in efficiency models," CEPA Working Papers Series WP022008, School of Economics, University of Queensland, Australia.
  21. Abolfazl Keshvari & Nasim Dehghan Hardoroudi, 2008. "An Extended Numeration Method For Solving Free Disposal Hull Models In Dea," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(05), pages 689-696.
  22. Podinovski, V. V., 2004. "On the linearisation of reference technologies for testing returns to scale in FDH models," European Journal of Operational Research, Elsevier, vol. 152(3), pages 800-802, February.
  23. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
  24. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  25. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  26. Henry Tulkens, 1993. "On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit," Journal of Productivity Analysis, Springer, vol. 4(1), pages 183-210, June.
  27. Per Agrell & Jørgen Tind, 2001. "A Dual Approach to Nonconvex Frontier Models," Journal of Productivity Analysis, Springer, vol. 16(2), pages 129-147, September.
  28. Leopold Simar & Valentin Zelenyuk, 2008. "Stochastic FDH/DEA estimators for Frontier Analysis," Discussion Papers 8, Kyiv School of Economics.
  29. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
  30. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-94, July-Aug..
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:231:y:2013:i:2:p:481-491. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.