IDEAS home Printed from https://ideas.repec.org/p/zbw/cawmdp/60.html
   My bibliography  Save this paper

The StoNED age: The departure into a new era of efficiency analysis? An MC study comparing StoNED and the "oldies" (SFA and DEA)

Author

Listed:
  • Andor, Mark
  • Hesse, Frederik

Abstract

Based on the seminal paper of Farrell (1957), researchers have developed several methods for measuring efficiency. Nowadays, the most prominent representatives are nonparametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA), both introduced in the late 1970s. Since decades, researchers have been attempting to develop a method which combines the virtues - both nonparametric and stochastic - of these oldies. The recently introduced Stochastic non-smooth envelopment of data (StoNED) by Kuosmanen and Kortelainen (2010) is a promising method. This paper compares the StoNED method with the two oldies DEA and SFA and extends the initial Monte Carlo simulation of Kuosmanen and Kortelainen (2010) in two directions. Firstly, we consider a wider range of conditions. Secondly, we also consider the maximum likelihood estimator (ML) and the pseudolikelihood estimator (PL) for SFA and StoNED, respectively. We show that, in scenarios without noise, the rivalry is still between the oldies, while in noisy scenarios, the nonparametric StoNED PL now constitutes a promising alternative to the SFA ML.

Suggested Citation

  • Andor, Mark & Hesse, Frederik, 2012. "The StoNED age: The departure into a new era of efficiency analysis? An MC study comparing StoNED and the "oldies" (SFA and DEA)," CAWM Discussion Papers 60, University of Münster, Center of Applied Economic Research Münster (CAWM).
  • Handle: RePEc:zbw:cawmdp:60
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62132/1/723879877.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gong, Byeong-Ho & Sickles, Robin C., 1992. "Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 259-284.
    2. T. O. Riecken, 1957. "Discussion," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 5(1), pages 32-34, March.
    3. W. MacGILLIVRAY, 1957. "Discussion," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 5(2), pages 108-110, July.
    4. Haney, Aoife Brophy & Pollitt, Michael G., 2009. "Efficiency analysis of energy networks: An international survey of regulators," Energy Policy, Elsevier, vol. 37(12), pages 5814-5830, December.
    5. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    6. Oleg Badunenko & Daniel J. Henderson & Subal C. Kumbhakar, 2012. "When, where and how to perform efficiency estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(4), pages 863-892, October.
    7. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-363, July.
    8. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    9. Adler, Nicole & Yazhemsky, Ekaterina, 2010. "Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction," European Journal of Operational Research, Elsevier, vol. 202(1), pages 273-284, April.
    10. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    11. R. Banker & W. Cooper & E. Grifell-Tajté & Jesús Pastor & Paul Wilson & Eduardo Ley & C. Lovell, 1994. "Validation and generalization of DEA and its uses," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(2), pages 249-314, December.
    12. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    13. KNEIP, Alois & SIMAR, Léopold, 1995. "A General Framework for Frontier Estimation with Panel Data," CORE Discussion Papers 1995060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Banker, Rajiv D. & Gadh, Vandana M. & Gorr, Wilpen L., 1993. "A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 67(3), pages 332-343, June.
    15. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    16. Perelman, Sergio & Santín, Daniel, 2009. "How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement," European Journal of Operational Research, Elsevier, vol. 199(1), pages 303-310, November.
    17. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    18. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1663-1697, December.
    19. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    20. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    21. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    22. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    23. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, March.
    24. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    efficiency; stochastic non-smooth envelopment of data (StoNED); data envelopment analysis (DEA); stochastic frontier analysis (SFA); monte carlo simulation;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • D2 - Microeconomics - - Production and Organizations
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cawmdp:60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/camuede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.