IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement

  • Perelman, Sergio
  • Santín, Daniel

Monte Carlo experimentation is a well-known approach used to test the performance of alternative methodologies under different hypotheses. In the frontier analysis framework, whatever the parametric or non-parametric methods tested, experiments to date have been developed assuming single output multi-input production functions. The data generated have mostly assumed a Cobb-Douglas technology. Among other drawbacks, this simple framework does not allow the evaluation of DEA performance on scale efficiency measurement. The aim of this paper is twofold. On the one hand, we show how reliable two-output two-input production data can be generated using a parametric output distance function approach. A variable returns to scale translog technology satisfying regularity conditions is used for this purpose. On the other hand, we evaluate the accuracy of DEA technical and scale efficiency measurement when sample size and output ratios vary. Our Monte Carlo experiment shows that the correlation between true and estimated scale efficiency is dramatically low when DEA analysis is performed with small samples and wide output ratio variations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 199 (2009)
Issue (Month): 1 (November)
Pages: 303-310

in new window

Handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:303-310
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:303-310. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.