IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Globally flexible functional forms: The neural distance function

  • Michaelides, Panayotis G.
  • Vouldis, Angelos T.
  • Tsionas, Efthymios G.

The output distance function is a key concept in economics. However, its empirical estimation often violates properties dictated by neoclassical production theory. In this paper, we introduce the neural distance function (NDF) which constitutes a global approximation to any arbitrary production technology with multiple outputs given by a neural network (NN) specification. The NDF imposes all theoretical properties such as monotonicity, curvature and homogeneity, for all economically admissible values of outputs and inputs. Fitted to a large data set for all US commercial banks (1989-2000), the NDF explains a very high proportion of the variance of output while keeping the number of parameters to a minimum and satisfying the relevant theoretical properties. All measures such as total factor productivity (TFP) and technical efficiency (TE) are computed routinely. Next, the NDF is compared with the Translog popular specification and is found to provide very satisfactory results as it possesses the properties thought as desirable in neoclassical production theory in a way not matched by its competing specification.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 206 (2010)
Issue (Month): 2 (October)
Pages: 456-469

in new window

Handle: RePEc:eee:ejores:v:206:y:2010:i:2:p:456-469
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. SIMAR, Léopold & WILSON, Paul W., 1997. "Some problems with the Ferrier/Hirschberg bootstrap idea," CORE Discussion Papers 1997062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Reinhard, Stijn & Thijssen, Geert, 1998. "Resource Use Efficiency Of Dutch Dairy Farms; A Parametric Distance Function Approach," 1998 Annual meeting, August 2-5, Salt Lake City, UT 21022, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  3. Hugo Fuentes & Emili Grifell-Tatjé & Sergio Perelman, 2001. "A Parametric Distance Function Approach for Malmquist Productivity Index Estimation," Journal of Productivity Analysis, Springer, vol. 15(2), pages 79-94, March.
  4. Simar, L. & Wilson, P.W., . "Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models," CORE Discussion Papers RP 1304, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Tim Coelli & Sergio Perelman, 2000. "Technical efficiency of European railways: a distance function approach," Applied Economics, Taylor & Francis Journals, vol. 32(15), pages 1967-1976.
  6. Fleissig, Adrian R. & Kastens, Terry & Terrell, Dek, 2000. "Evaluating the semi-nonparametric fourier, aim, and neural networks cost functions," Economics Letters, Elsevier, vol. 68(3), pages 235-244, September.
  7. Tsionas, E.G., 2001. "Stochastic Frontier Models with Random Coefficients," Athens University of Economics and Business 130, Athens University of Economics and Business, Department of International and European Economic Studies.
  8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  9. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
  10. Efthymios Tsionas, 2000. "Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 13(3), pages 183-205, May.
  11. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2006. "Estimation of stochastic frontier production functions with input-oriented technical efficiency," Journal of Econometrics, Elsevier, vol. 133(1), pages 71-96, July.
  12. Gallant, A. Ronald & Golub, Gene H., 1984. "Imposing curvature restrictions on flexible functional forms," Journal of Econometrics, Elsevier, vol. 26(3), pages 295-321, December.
  13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  14. Santin, Daniel, 2004. "On the Approximation of Production Functions: A Comparison of Artificial Neural Networks Frontiers and Efficiency Techniques," Efficiency Series Papers 2004/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
  15. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. " A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-89, July.
  16. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
  17. Gallant, A. Ronald, 1982. "Unbiased determination of production technologies," Journal of Econometrics, Elsevier, vol. 20(2), pages 285-323, November.
  18. Grosskopf, S. & Margaritis, D. & Valdmanis, V., 1995. "Estimating output substitutability of hospital services: A distance function approach," European Journal of Operational Research, Elsevier, vol. 80(3), pages 575-587, February.
  19. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
  20. Tim J. Coelli & Chris O'Donnell, 2003. "A Bayesian Approach To Imposing Curvature On Distance Functions," CEPA Working Papers Series WP032003, School of Economics, University of Queensland, Australia.
  21. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
  22. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
  23. Gary Ferrier & Joseph Hirschberg, 1997. "Bootstrapping Confidence Intervals for Linear Programming Efficiency Scores: With an Illustration Using Italian Banking Data," Journal of Productivity Analysis, Springer, vol. 8(1), pages 19-33, March.
  24. Löthgren, Mickael, 1998. "How to Bootstrap DEA Estimators: A Monte Carlo Comparison," SSE/EFI Working Paper Series in Economics and Finance 223, Stockholm School of Economics.
  25. Daniel Santin & Francisco Delgado & Aurelia Valino, 2004. "The measurement of technical efficiency: a neural network approach," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 627-635.
  26. Tsionas, Efthymios G., 2003. "Combining DEA and stochastic frontier models: An empirical Bayes approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 499-510, June.
  27. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  28. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "The Joint Measurement of Technical and Allocative Inefficiencies: An Application of Bayesian Inference in Nonlinear Random-Effects Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 736-747, September.
  29. Efthymios G. Tsionas, 2001. "An introduction to efficiency measurement using Bayesian stochastic frontier models," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 3(2), pages 287-311.
  30. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-94, March-Apr.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:2:p:456-469. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.