IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v36y2004i6p627-635.html
   My bibliography  Save this article

The measurement of technical efficiency: a neural network approach

Author

Listed:
  • Daniel Santin
  • Francisco Delgado
  • Aurelia Valino

Abstract

The main purpose of this paper is to provide an introduction to artificial neural networks (ANNs) and to review their applications in efficiency analysis. Finally, a comparison of efficiency techniques in a non-linear production function is carried out. The results suggest that ANNs are a promising alternative to traditional approaches, econometric models and non-parametric methods such as data envelopment analysis, to fit production functions and measure efficiency under non-linear contexts.

Suggested Citation

  • Daniel Santin & Francisco Delgado & Aurelia Valino, 2004. "The measurement of technical efficiency: a neural network approach," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 627-635.
  • Handle: RePEc:taf:applec:v:36:y:2004:i:6:p:627-635 DOI: 10.1080/0003684042000217661
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0003684042000217661
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eide, Eric & Showalter, Mark H., 1998. "The effect of school quality on student performance: A quantile regression approach," Economics Letters, Elsevier, vol. 58(3), pages 345-350, March.
    2. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    5. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    6. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vouldis, Angelos T. & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2010. "Estimating semi-parametric output distance functions with neural-based reduced form equations using LIML," Economic Modelling, Elsevier, vol. 27(3), pages 697-704, May.
    2. Francisco J. Delgado, 2005. "Measuring efficiency with neural networks. An application to the public sector," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-10.
    3. Kwon, He-Boong, 2017. "Exploring the predictive potential of artificial neural networks in conjunction with DEA in railroad performance modeling," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 159-170.
    4. Michael Dietrich, 2005. "Using simple neural networks to analyse firm activity," Working Papers 2005014, The University of Sheffield, Department of Economics, revised Jul 2005.
    5. Daniel Santin, 2008. "On the approximation of production functions: a comparison of artificial neural networks frontiers and efficiency techniques," Applied Economics Letters, Taylor & Francis Journals, vol. 15(8), pages 597-600.
    6. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    7. Lee, Jooh & Kwon, He-Boong, 2017. "Progressive performance modeling for the strategic determinants of market value in the high-tech oriented SMEs," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 91-102.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," IREA Working Papers 201417, University of Barcelona, Research Institute of Applied Economics, revised May 2014.
    9. repec:ebl:ecbull:v:3:y:2005:i:15:p:1-10 is not listed on IDEAS
    10. Samoilenko, Sergey & Osei-Bryson, Kweku-Muata, 2010. "Determining sources of relative inefficiency in heterogeneous samples: Methodology using Cluster Analysis, DEA and Neural Networks," European Journal of Operational Research, Elsevier, vol. 206(2), pages 479-487, October.
    11. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    12. Michael Dietrich, 2006. "Neural networks and the evolution of firms and industries: An application to UK SIC34 and SIC72," Working Papers 2006007, The University of Sheffield, Department of Economics, revised May 2006.
    13. Shivi Agarwal, 2016. "DEA-neural networks approach to assess the performance of public transport sector of India," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 248-258, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:36:y:2004:i:6:p:627-635. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.