IDEAS home Printed from https://ideas.repec.org/h/aec/ieed06/06-02.html
   My bibliography  Save this book chapter

El rendimiento educativo y sus determinantes según PISA: Una revisión de la literatura en España

In: Investigaciones de Economía de la Educación 6

Author

Listed:
  • José Manuel Cordero Ferrera

    () (Universidad de Extremadura)

  • Eva Crespo Cebada

    () (Universidad de Extremadura)

  • Francisco Pedraja

    () (Universidad de Extremadura)

  • Rosa Simancas Rodríguez

    () (Universidad de Extremadura)

Abstract

La publicación de los resultados de la cuarta oleada del Informe PISA ha vuelto a poner de relieve la distancia que sigue existiendo entre nuestro país y nuestros principales competidores. El evidente interés por reducir esa distancia ha dado lugar en los últimos años a la proliferación de estudios empíricos que, tomando como base la información proporcionada por esta base de datos, han tratado de indagar acerca de cuáles son los principales determinantes del rendimiento educativo en nuestro país. El objetivo de este trabajo consiste en la revisión sistemática de estas investigaciones con el propósito de clasificarlos, ordenarlos y extraer sus principales conclusiones, cuyo interés para el desarrollo de medidas de política educativa resulta evidente.

Suggested Citation

  • José Manuel Cordero Ferrera & Eva Crespo Cebada & Francisco Pedraja & Rosa Simancas Rodríguez, 2011. "El rendimiento educativo y sus determinantes según PISA: Una revisión de la literatura en España," Investigaciones de Economía de la Educación volume 6,in: Antonio Caparrós Ruiz (ed.), Investigaciones de Economía de la Educación 6, edition 1, volume 6, chapter 2, pages 40-56 Asociación de Economía de la Educación.
  • Handle: RePEc:aec:ieed06:06-02
    as

    Download full text from publisher

    File URL: http://repec.economicsofeducation.com/2011malaga/06-02.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    2. Andrew Worthington, 2001. "An Empirical Survey of Frontier Efficiency Measurement Techniques in Education," Education Economics, Taylor & Francis Journals, vol. 9(3), pages 245-268.
    3. Eide, Eric & Showalter, Mark H., 1998. "The effect of school quality on student performance: A quantile regression approach," Economics Letters, Elsevier, vol. 58(3), pages 345-350, March.
    4. Thomas Fuchs & Ludger Wößmann, 2007. "What accounts for international differences in student performance? A re-examination using PISA data," Empirical Economics, Springer, vol. 32(2), pages 433-464, May.
    5. Jorge Calero & Josep-Oriol Escardíbul, 2007. "Evaluación de servicios educativos: el rendimiento en los centros públicos y privados medido en PISA-2003," Hacienda Pública Española, IEF, vol. 183(4), pages 33-66, december.
    6. Henry M. Levin, 1974. "Measuring Efficiency in Educational Production," Public Finance Review, , vol. 2(1), pages 3-24, January.
    7. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    8. Emmanuel Thanssoulis, 1999. "Setting Achievement Targets for School Children," Education Economics, Taylor & Francis Journals, vol. 7(2), pages 101-119.
    9. Hoff, Ayoe, 2007. "Second stage DEA: Comparison of approaches for modelling the DEA score," European Journal of Operational Research, Elsevier, vol. 181(1), pages 425-435, August.
    10. A. Bessent & W. Bessent & J. Kennington & B. Reagan, 1982. "An Application of Mathematical Programming to Assess Productivity in the Houston Independent School District," Management Science, INFORMS, vol. 28(12), pages 1355-1367, December.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Kalyan Chakraborty & Basudeb Biswas & W. Cris Lewis, 2001. "Measurement of Technical Efficiency in Public Education: A Stochastic and Nonstochastic Production Function Approach," Southern Economic Journal, Southern Economic Association, vol. 67(4), pages 889-905, April.
    13. Sergio Perelman & Daniel Santin, 2011. "Measuring educational efficiency at student level with parametric stochastic distance functions: an application to Spanish PISA results," Education Economics, Taylor & Francis Journals, vol. 19(1), pages 29-49.
    14. Eric A. Hanushek, 2003. "The Failure of Input-Based Schooling Policies," Economic Journal, Royal Economic Society, vol. 113(485), pages 64-98, February.
    15. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    16. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    17. Eric A. Hanushek, 1979. "Conceptual and Empirical Issues in the Estimation of Educational Production Functions," Journal of Human Resources, University of Wisconsin Press, vol. 14(3), pages 351-388.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    19. Andrés Fuentes, 2009. "Raising Education Outcomes in Spain," OECD Economics Department Working Papers 666, OECD Publishing.
    20. Sergio Perelman & Daniel Santin, 2011. "Imposing monotonicity on outputs in parametric distance function estimations," Applied Economics, Taylor & Francis Journals, vol. 43(30), pages 4651-4661.
    21. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:col:000090:016108 is not listed on IDEAS

    More about this item

    Keywords

    PISA; Survey; Regresión; Eficiencia.;

    JEL classification:

    • H52 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Education
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aec:ieed06:06-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Domingo P. Ximénez-de-Embún). General contact details of provider: http://edirc.repec.org/data/aedeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.