IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i6p3155-3166.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Performance assessment of electric power generations using an adaptive neural network algorithm

Author

Listed:
  • Azadeh, A.
  • Ghaderi, S.F.
  • Anvari, M.
  • Saberi, M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:6:p:3155-3166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(06)00430-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:ebl:ecbull:v:3:y:2005:i:15:p:1-10 is not listed on IDEAS
    2. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2001. "Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993," European Journal of Operational Research, Elsevier, vol. 133(2), pages 232-259, January.
    4. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    5. Olatubi, Williams O. & Dismukes, David E., 2000. "A data envelopment analysis of the levels and determinants of coal-fired electric power generation performance," Utilities Policy, Elsevier, vol. 9(2), pages 47-59, June.
    6. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    7. Lam, Pun-Lee & Shiu, Alice, 2001. "A data envelopment analysis of the efficiency of China's thermal power generation," Utilities Policy, Elsevier, vol. 10(2), pages 75-83, June.
    8. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    9. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
    10. Yunos, Jamaluddin Mohd & Hawdon, David, 1997. "The efficiency of the National Electricity Board in Malaysia: An intercountry comparison using DEA," Energy Economics, Elsevier, vol. 19(2), pages 255-269, May.
    11. Francisco J. Delgado, 2005. "Measuring efficiency with neural networks. An application to the public sector," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-10.
    12. Daniel Santin & Francisco Delgado & Aurelia Valino, 2004. "The measurement of technical efficiency: a neural network approach," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 627-635.
    13. Park, Soo-Uk & Lesourd, Jean-Baptiste, 2000. "The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches," International Journal of Production Economics, Elsevier, vol. 63(1), pages 59-67, January.
    14. Ali Emami Meibodi, 1998. "Efficiency Considerations in the Electricity Supply Industry; The Case of Iran," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 95, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    15. Jamasb, T. & Pollitt, M., 2001. "Benchmarking and Regulation of Electricity Transmission and Distribution Utilities: Lessons from International Experience," Cambridge Working Papers in Economics 0101, Faculty of Economics, University of Cambridge.
    16. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    17. Christopher R. Knittel, 2002. "Alternative Regulatory Methods And Firm Efficiency: Stochastic Frontier Evidence From The U.S. Electricity Industry," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 530-540, August.
    18. Zaiyong Tang & Paul A. Fishwick, 1993. "Feedforward Neural Nets as Models for Time Series Forecasting," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 374-385, November.
    19. Indro, D. C. & Jiang, C. X. & Patuwo, B. E. & Zhang, G. P., 1999. "Predicting mutual fund performance using artificial neural networks," Omega, Elsevier, vol. 27(3), pages 373-380, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Azadeh & M. Khakestani & S. Motevali Haghighi & A. Arjmand & Z. Jiryaei Sharahi, 2017. "A unique intelligent algorithm for optimization of human reliability and decision styles: a large petrochemical plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1161-1176, November.
    2. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    5. Ahmad Attari Ghomi & Ayyub Ansarinejad & Hamid Razaghi & Davood Hafezi & Morteza Barazande, 2014. "A Novel Electric Power Plants Performance Assessment Technique Based on Genetic Programming Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 8(3), pages 1-43, June.
    6. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    7. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    8. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    9. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    10. Reza Yazdanparast & Reza Tavakkoli-Moghaddam & Razieh Heidari & Leyla Aliabadi, 2021. "A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 611-631, June.
    11. Masoud Rabbani & Reza Yazdanparast & Mahdi Mobini, 2019. "An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 228-241, April.
    12. Azadeh, A. & Ghaderi, S.F. & Nasrollahi, M.R., 2011. "Location optimization of wind plants in Iran by an integrated hierarchical Data Envelopment Analysis," Renewable Energy, Elsevier, vol. 36(5), pages 1621-1631.
    13. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    2. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    3. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    4. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    5. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    6. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    7. See, Kok Fong & Coelli, Tim, 2012. "An analysis of factors that influence the technical efficiency of Malaysian thermal power plants," Energy Economics, Elsevier, vol. 34(3), pages 677-685.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "Operational synergy in the US electric utility industry under an influence of deregulation policy: A linkage to financial performance and corporate value," Energy Policy, Elsevier, vol. 39(2), pages 699-713, February.
    9. Jamasb, T. & Pollitt, M., 2000. "Benchmarking and regulation: international electricity experience," Utilities Policy, Elsevier, vol. 9(3), pages 107-130, September.
    10. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    11. Seifert, Stefan & Cullmann, Astrid & von Hirschhausen, Christian, 2016. "Technical efficiency and CO2 reduction potentials — An analysis of the German electricity and heat generating sector," Energy Economics, Elsevier, vol. 56(C), pages 9-19.
    12. Gharneh, Naser Shams & Nabavieh, Alireza & Gholamiangonabadi, Davoud & Alimoradi, Mohammad, 2014. "Productivity change and its determinants: Application of the Malmquist index with bootstrapping in Iranian steam power plants," Utilities Policy, Elsevier, vol. 31(C), pages 114-120.
    13. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    14. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    15. Fazıl Gökgöz & Ercem Erkul, 2014. "Energy Efficiency Analysis For The European Countries," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 8(1), pages 124-140.
    16. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    17. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    18. See, Kok Fong & Coelli, Tim, 2014. "Total factor productivity analysis of a single vertically integrated electricity utility in Malaysia using a Törnqvist index method," Utilities Policy, Elsevier, vol. 28(C), pages 62-72.
    19. Iglesias-Gómez, Guillermo & Seijas Díaz, A., 2008. "Evaluación de la eficiencia productiva de los parques eólicos gallegos," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 26, pages 167-194, Septiembr.
    20. Zhigang Zhu & Xuping Zhang & Yujia Wang & Xiang Chen, 2021. "Energy Cost Performance of Thermal Power Industry in China Considering Regional Heterogeneity: A Meta-Frontier Cost Malmquist Productivity Decomposition Approach," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:6:p:3155-3166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.