IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i2p392-402.html
   My bibliography  Save this article

Efficiency measurement in public transport: Are findings specification sensitive?

Author

Listed:
  • Karlaftis, Matthew G.
  • Tsamboulas, Dimitrios

Abstract

The need to measure transit system performance along with its various dimensions such as efficiency and effectiveness has led to the development of a wide array of approaches and vast literature. However, depending upon the specific approach used to examine performance, different conclusions are oftentimes reached. Using data from 15 European transit systems for a ten year time period (1990–2000), this paper discusses three important transit performance questions; (i) Do different efficiency assessment methodologies produce similar results? (ii) How are the two basic dimensions of transit performance, namely efficiency and effectiveness, related? and (iii) Are findings regarding organizational regimes (public operations, contracting and so on) sensitive to the methodological specifications employed? Results clearly indicate that efficiency scores and associated recommendations are sensitive to the models used, while efficiency and effectiveness are – albeit weakly – negatively related; these two findings can have far reaching policy implications.

Suggested Citation

  • Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:2:p:392-402
    DOI: 10.1016/j.tra.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    2. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    3. Jain, Priyanka & Cullinane, Sharon & Cullinane, Kevin, 2008. "The impact of governance development models on urban rail efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1238-1250, November.
    4. Yu, Ming-Miin, 2008. "Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world's railways through NDEA analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1283-1294, December.
    5. Kumbhakar, Sabul C., 1993. "Production risk, technical efficiency, and panel data," Economics Letters, Elsevier, vol. 41(1), pages 11-16.
    6. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    7. William Roy & Anne Yvrande-Billon, 2007. "Ownership, Contractual Practices and Technical Efficiency: The Case of Urban Public Transport in France," Journal of Transport Economics and Policy, University of Bath, vol. 41(2), pages 257-282, May.
    8. Bruno De Borger & Kristiaan Kerstens & Álvaro Costa, 2002. "Public transit performance: What does one learn from frontier studies?," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 1-38, January.
    9. Edward Bierhanzl & Paul Downing, 1998. "User charges and bureaucratic inefficiency," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 26(2), pages 175-189, June.
    10. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    11. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    12. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    15. William Greene, 2004. "Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization's panel data on national health care systems," Health Economics, John Wiley & Sons, Ltd., vol. 13(10), pages 959-980, October.
    16. Mathisen, Terje Andreas & Solvoll, Gisle, 2008. "Competitive tendering and structural changes: An example from the bus industry," Transport Policy, Elsevier, vol. 15(1), pages 1-11, January.
    17. Khem Sharma & Pingsun Leung & Halina Zaleski, 1997. "Productive Efficiency of the Swine Industry in Hawaii: Stochastic Frontier vs. Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 8(4), pages 447-459, November.
    18. Kumbhakar, Subal C & Hjalmarsson, Lennart, 1995. "Labour-Use Efficiency in Swedish Social Insurance Offices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(1), pages 33-47, Jan.-Marc.
    19. Yu, Ming-Miin & Fan, Chih-Ku, 2008. "The effects of privatization on return to the dollar: A case study on technical efficiency, and price distortions of Taiwan's intercity bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 935-950, July.
    20. Iseki, Hiroyuki, 2010. "Effects of contracting on cost efficiency in US fixed-route bus transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 457-472, August.
    21. Odeck, James, 2006. "Congestion, ownership, region of operation, and scale: Their impact on bus operator performance in Norway," Socio-Economic Planning Sciences, Elsevier, vol. 40(1), pages 52-69, March.
    22. Charnes, Abraham & Gallegos, Armando & Li, Hongyu, 1996. "Robustly efficient parametric frontiers via Multiplicative DEA for domestic and international operations of the Latin American airline industry," European Journal of Operational Research, Elsevier, vol. 88(3), pages 525-536, February.
    23. B. de Borger & K. Kerstens, 2006. "The performance of bus-transit operators," Post-Print hal-00185456, HAL.
    24. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    25. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    26. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    27. Odeck, James, 2008. "The effect of mergers on efficiency and productivity of public transport services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 696-708, May.
    28. Kerstens, K., 1996. "Technical efficiency measurement and explanation of French urban transit companies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 431-452, November.
    29. Karlaftis, Matthew G. & McCarthy, Patrick, 2002. "Cost structures of public transit systems: a panel data analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(1), pages 1-18, January.
    30. Chu, Xuehao & Fielding, Gordon J. & Lamar, Bruce W., 1992. "Measuring transit performance using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(3), pages 223-230, May.
    31. William Roy & Anne Yvrande-Billon, 2007. "Ownership, Contractual Practices and Technical Efficiency: The Case of Urban Public Transport in France," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00107375, HAL.
    32. Karlaftis, Matthew G., 2003. "Investigating transit production and performance: a programming approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 225-240, March.
    33. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    34. Karlaftis, Matthew & McCarthy, Patrick, 1999. "The Effect of Privatization on Public Transit Costs," Journal of Regulatory Economics, Springer, vol. 16(1), pages 27-43, July.
    35. Graham, Daniel J., 2008. "Productivity and efficiency in urban railways: Parametric and non-parametric estimates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 84-99, January.
    36. Gkritza, Konstantina & Karlaftis, Matthew G. & Mannering, Fred L., 2011. "Estimating multimodal transit ridership with a varying fare structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 148-160, February.
    37. Gupta, Diwakar & Chen, Hao-Wei & Miller, Lisa A. & Surya, Fajarrani, 2010. "Improving the efficiency of demand-responsive paratransit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 201-217, May.
    38. Sampaio, Breno Ramos & Neto, Oswaldo Lima & Sampaio, Yony, 2008. "Efficiency analysis of public transport systems: Lessons for institutional planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 445-454, March.
    39. Benjamin, Julian & Obeng, Kofi, 1990. "The effect of policy and background variables on total factor productivity for public transit," Transportation Research Part B: Methodological, Elsevier, vol. 24(1), pages 1-14, February.
    40. Iseki, Hiroyuki, 2008. "Economies of scale in bus transit service in the USA: How does cost efficiency vary by agency size and level of contracting?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1086-1097, October.
    41. William Roy & Anne Yvrande-Billon, 2007. "Ownership, Contractual Practices and Technical Efficiency: The Case of Urban Public Transport in France," Post-Print halshs-00107375, HAL.
    42. Barnum, Darold T. & Karlaftis, Matthew G. & Tandon, Sonali, 2011. "Improving the efficiency of metropolitan area transit by joint analysis of its multiple providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1160-1176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wencheng & Shuai, Bin & Sun, Yan & Wang, Yang & Antwi, Eric, 2018. "Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 292-303.
    2. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. Zhang, Chunqin & Juan, Zhicai & Luo, Qingyu & Xiao, Guangnian, 2016. "Performance evaluation of public transit systems using a combined evaluation method," Transport Policy, Elsevier, vol. 45(C), pages 156-167.
    4. Matthias Walter, 2011. "Some Determinants of Cost Efficiency in German Public Transport," Journal of Transport Economics and Policy, University of Bath, vol. 45(1), pages 1-20, January.
    5. Zhang, Chunqin & Xiao, Guangnian & Liu, Yong & Yu, Feng, 2018. "The relationship between organizational forms and the comprehensive effectiveness for public transport services in China?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 783-802.
    6. Karlaftis, Matthew G., 2003. "Investigating transit production and performance: a programming approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 225-240, March.
    7. Di Yao & Liqun Xu & Jinpei Li, 2019. "Evaluating the Performance of Public Transit Systems: A Case Study of Eleven Cities in China," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
    8. Yao, Di & Xu, Liqun & Li, Jinpei, 2020. "Does technical efficiency play a mediating role between bus facility scale and ridership attraction? Evidence from bus practices in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 77-96.
    9. Hao Zhang & Xinyue Wang & Letao Chen & Yujia Luo & Sujie Peng, 2022. "Evaluation of the Operational Efficiency and Energy Efficiency of Rail Transit in China’s Megacities Using a DEA Model," Energies, MDPI, vol. 15(20), pages 1-16, October.
    10. Pestana Barros, Carlos & Peypoch, Nicolas, 2010. "Productivity changes in Portuguese bus companies," Transport Policy, Elsevier, vol. 17(5), pages 295-302, September.
    11. Zhang, Chunqin & Juan, Zhicai & Xiao, Guangnian, 2015. "Do contractual practices affect technical efficiency? Evidence from public transport operators in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 39-55.
    12. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    13. Mallikarjun, Sreekanth & Lewis, Herbert F. & Sexton, Thomas R., 2014. "Operational performance of U.S. public rail transit and implications for public policy," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 74-88.
    14. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    15. Maria Nieswand & Matthias Walter, 2010. "Cost Efficiency and Subsidization in German Local Public Bus Transit," Discussion Papers of DIW Berlin 1071, DIW Berlin, German Institute for Economic Research.
    16. Guillermo Díaz & Vincent Charles, 2016. "Regulatory design and technical efficiency: public transport in France," Journal of Regulatory Economics, Springer, vol. 50(3), pages 328-350, December.
    17. de Borger, Bruno & Kerstens, Kristiaan & Staat, Matthias, 2008. "Transit costs and cost efficiency: Bootstrapping non-parametric frontiers," Research in Transportation Economics, Elsevier, vol. 23(1), pages 53-64, January.
    18. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
    19. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    20. Qin, Feifei & Zhang, Xiaoning & Zhou, Qiang, 2014. "Evaluating the impact of organizational patterns on the efficiency of urban rail transit systems in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 89-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:2:p:392-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.