IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Inference in dynamic stochastic frontier models

  • Efthymios G. Tsionas

    (Department of Economics, Athens University of Economics and Business, 76 Patission Street, 104 34 Athens, Greece)

An important issue in models of technical efficiency measurement concerns the temporal behaviour of inefficiency. Consideration of dynamic models is necessary but inference in such models is complicated. In this paper we propose a stochastic frontier model that allows for technical inefficiency effects and dynamic technical inefficiency, and use Bayesian inference procedures organized around data augmentation techniques to provide inferences. Also provided are firm-specific efficiency measures. The new methods are applied to a panel of large US commercial banks over the period 1989-2000. Copyright © 2006 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/jae.862
File Function: Link to full text; subscription required
Download Restriction: no

File URL: http://qed.econ.queensu.ca:80/jae/2006-v21.5/
File Function: Supporting data files and programs
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Applied Econometrics.

Volume (Year): 21 (2006)
Issue (Month): 5 ()
Pages: 669-676

as
in new window

Handle: RePEc:jae:japmet:v:21:y:2006:i:5:p:669-676
Contact details of provider: Web page: http://www.interscience.wiley.com/jpages/0883-7252/

Order Information: Web: http://www3.interscience.wiley.com/jcatalog/subscribe.jsp?issn=0883-7252 Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
  2. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
  3. Koop, Gary, 1994. " Recent Progress in Applied Bayesian Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 8(1), pages 1-34, March.
  4. Nickell, Stephen J, 1996. "Competition and Corporate Performance," Journal of Political Economy, University of Chicago Press, vol. 104(4), pages 724-46, August.
  5. William Greene, 2001. "Fixed and Random Effects in Nonlinear Models," Working Papers 01-01, New York University, Leonard N. Stern School of Business, Department of Economics.
  6. Carmen Fernandez & Gary Koop & M. F. J. Steel, 2004. "A Bayesian analysis of multiple-output production frontiers," ESE Discussion Papers 21, Edinburgh School of Economics, University of Edinburgh.
  7. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
  8. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
  9. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 2000. " A Stochastic Frontier Analysis of Output Level and Growth in Poland and Western Economies," Economic Change and Restructuring, Springer, vol. 33(3), pages 185-202.
  10. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 2000. "Modeling the Sources of Output Growth in a Panel of Countries," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 284-99, July.
  11. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S19-40, Suppl. De.
  12. Berger, Allen N. & Humphrey, David B., 1991. "The dominance of inefficiencies over scale and product mix economies in banking," Journal of Monetary Economics, Elsevier, vol. 28(1), pages 117-148, August.
  13. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-86, July.
  14. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  15. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
  16. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-32.
  17. Tsionas, E.G., 2001. "Stochastic Frontier Models with Random Coefficients," DEOS Working Papers 130, Athens University of Economics and Business.
  18. William Greene, 2001. "Estimating Econometric Models With Fixed Effects," Working Papers 01-10, New York University, Leonard N. Stern School of Business, Department of Economics.
  19. Bauer, Paul W., 1990. "Recent developments in the econometric estimation of frontiers," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 39-56.
  20. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
  21. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  22. Seung Ahn & Robin Sickles, 2000. "Estimation of long-run inefficiency levels: a dynamic frontier approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 461-492.
  23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:21:y:2006:i:5:p:669-676. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.