IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v27y2007i3p163-176.html
   My bibliography  Save this article

Bayesian stochastic frontier analysis using WinBUGS

Author

Listed:
  • Jim Griffin

    ()

  • Mark Steel

    ()

Abstract

Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis. This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the WinBUGS package, a freely available software. General code for cross-sectional and panel data are presented and various ways of summarizing posterior inference are discussed. Several examples illustrate that analyses with models of genuine practical interest can be performed straightforwardly and model changes are easily implemented. Although WinBUGS may not be that efficient for more complicated models, it does make Bayesian inference with stochastic frontier models easily accessible for applied researchers and its generic structure allows for a lot of flexibility in model specification. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
  • Handle: RePEc:kap:jproda:v:27:y:2007:i:3:p:163-176
    DOI: 10.1007/s11123-007-0033-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-007-0033-y
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    2. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    3. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    4. Karl C. Ennsfellner & Danielle Lewis & Randy I. Anderson, 2004. "Production Efficiency in the Austrian Insurance Industry: A Bayesian Examination," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(1), pages 135-159, March.
    5. Lyubov A. Kurkalova & Alicia Carriquiry, 2002. "An Analysis of Grain Production Decline During the Early Transition in Ukraine: A Bayesian Inference," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1256-1263.
    6. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    7. Efthymios Tsionas, 2000. "Full Likelihood Inference in Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 13(3), pages 183-205, May.
    8. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-194, March-Apr.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    11. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    12. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2005. "Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 126(2), pages 355-384, June.
    13. Osiewalski, Jacek & Steel, Mark F.J. & Koop, Gary, 1992. "Posterior analysis of stochastic frontier models using Gibbs sampling," DES - Working Papers. Statistics and Econometrics. WS 3677, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    15. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
    16. Dorfman, Jeffrey H. & Koop, Gary, 2005. "Current developments in productivity and efficiency measurement," Journal of Econometrics, Elsevier, vol. 126(2), pages 233-240, June.
    17. Ho-chuan Huang, 2004. "Estimation of Technical Inefficiencies with Heterogeneous Technologies," Journal of Productivity Analysis, Springer, vol. 21(3), pages 277-296, May.
    18. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    2. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    3. Gholamreza Hajargasht & William E. Griffiths, 2018. "Estimation and testing of stochastic frontier models using variational Bayes," Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
    4. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    5. Yan, Jia & Sun, Xinyu & Liu, John J., 2009. "Assessing container operator efficiency with heterogeneous and time-varying production frontiers," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 172-185, January.
    6. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676.
    7. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    8. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    9. Oum, Tae H. & Yan, Jia & Yu, Chunyan, 2008. "Ownership forms matter for airport efficiency: A stochastic frontier investigation of worldwide airports," Journal of Urban Economics, Elsevier, vol. 64(2), pages 422-435, September.
    10. Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
    11. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, Open Access Journal, vol. 8(2), pages 1-22, April.
    12. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    13. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    14. Goto, Mika & Makhija, Anil K., 2007. "The Impact of Competition and Corporate Structure on Productive Efficiency: The Case of the U.S. Electric Utility Industry, 1990-2004," Working Paper Series 2007-10, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    15. Tsionas, Efthymios G., 2012. "Maximum likelihood estimation of stochastic frontier models by the Fourier transform," Journal of Econometrics, Elsevier, vol. 170(1), pages 234-248.
    16. Kamel Helali & Maha Kalai, 2015. "Technical Efficiency Determinants Of The Tunisian Manufacturing Industry: Stochastic Production Frontiers Estimates On Panel Data," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 40(2), pages 105-130, June.
    17. Michaelides, Panayotis G. & Vouldis, Angelos T. & Tsionas, Efthymios G., 2010. "Globally flexible functional forms: The neural distance function," European Journal of Operational Research, Elsevier, vol. 206(2), pages 456-469, October.
    18. Alfonso Flores-Lagunes & William C. Horrace & Kurt E. Schnier, 2007. "Identifying technically efficient fishing vessels: a non-empty, minimal subset approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 729-745.
    19. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Department of Economics - Working Papers Series 1092, The University of Melbourne.
    20. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.

    More about this item

    Keywords

    Efficiency; Markov chain Monte Carlo; Model comparison; Regularity; Software; C11; C23; D24;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:27:y:2007:i:3:p:163-176. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.