IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v8y2020i2p13-d347990.html
   My bibliography  Save this article

Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis

Author

Listed:
  • Kamil Makieła

    (Department of Econometrics and Operational Research, Cracow University of Economics, Rakowicka 27, 31-510 Krakow, Poland)

  • Błażej Mazur

    (Department of Empirical Analyses of Economic Stability, Cracow University of Economics, Rakowicka 27, 31-510 Krakow, Poland)

Abstract

This paper discusses Bayesian model averaging (BMA) in Stochastic Frontier Analysis and investigates inference sensitivity to prior assumptions made about the scale parameter of (in)efficiency. We turn our attention to the “standard” prior specifications for the popular normal-half-normal and normal-exponential models. To facilitate formal model comparison, we propose a model that nests both sampling models and generalizes the symmetric term of the compound error. Within this setup it is possible to develop coherent priors for model parameters in an explicit way. We analyze sensitivity of different prior specifications on the aforementioned scale parameter with respect to posterior characteristics of technology, stochastic parameters, latent variables and—especially—the models’ posterior probabilities, which are crucial for adequate inference pooling. We find that using incoherent priors on the scale parameter of inefficiency has (i) virtually no impact on the technology parameters; (ii) some impact on inference about the stochastic parameters and latent variables and (iii) substantial impact on marginal data densities, which are crucial in BMA.

Suggested Citation

  • Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
  • Handle: RePEc:gam:jecnmx:v:8:y:2020:i:2:p:13-:d:347990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/8/2/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/8/2/13/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    2. Tran, Kien C. & Tsionas, Mike G., 2016. "Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1113-1123.
    3. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    4. Jean-Pierre Florens & Léopold Simar & Ingrid Van Keilegom, 2020. "Estimation of the Boundary of a Variable Observed With Symmetric Error," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 425-441, January.
    5. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    6. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    7. Makieła, Kamil & Marzec, Jerzy & Pisulewski, Andrzej, 2016. "Productivity Change Analysis of Polish Dairy Farms After Poland’s Accession to the EU – An Output Growth Decomposition Approach," MPRA Paper 80295, University Library of Munich, Germany.
    8. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 2000. "Modeling the Sources of Output Growth in a Panel of Countries," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 284-299, July.
    9. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    10. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    13. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    14. Kamil Makiela and Jacek Osiewalski, 2018. "Cost Efficiency Analysis of Electricity Distribution," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
    16. Efthymios G. Tsionas, 2007. "Efficiency Measurement with the Weibull Stochastic Frontier," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(5), pages 693-706, October.
    17. William C. Horrace & Christopher F. Parmeter, 2018. "A Laplace stochastic frontier model," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 260-280, March.
    18. Alexander D. Stead & Phill Wheat & William H. Greene, 2018. "Erratum to: Estimating Efficiency in the Presence of Extreme Outliers: A Logistic-Half Normal Stochastic Frontier Model with Application to Highway Maintenance Costs in England," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages E1-E1, Springer.
    19. Kamil Makieła, 2014. "Bayesian Stochastic Frontier Analysis of Economic Growth and Productivity Change in the EU, USA, Japan and Switzerland," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(3), pages 193-216, September.
    20. William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), 2018. "Productivity and Inequality," Springer Proceedings in Business and Economics, Springer, number 978-3-319-68678-3, March.
    21. Jacek Osiewalski & Mark Steel, 1998. "Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 10(1), pages 103-117, July.
    22. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    23. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    24. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    25. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    26. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    27. Panayiotis Theodossiou & Dimitris Tsouknidis & Christos Savva, 2020. "Freight rates in downside and upside markets: pricing of own and spillover risks from other shipping segments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1097-1119, June.
    28. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    29. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    30. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    31. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    32. Alexander D. Stead & Phill Wheat & William H. Greene, 2018. "Estimating Efficiency in the Presence of Extreme Outliers: A Logistic-Half Normal Stochastic Frontier Model with Application to Highway Maintenance Costs in England," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Paul Makdissi & Robin C. Sickles & Michael Veall & Marcel-Cristia (ed.), Productivity and Inequality, pages 1-19, Springer.
    33. Gary Koop & Jacek Osiewalski & Mark F. J. Steel, 1999. "The Components of Output Growth: A Stochastic Frontier Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 455-487, November.
    34. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    2. Michel Mivumbi & Xiaoling Yuan, 2023. "Sustainable Environmental Economics in Farmers’ Production Factors via Irrigation Resources Utilization Using Technical Efficiency and Allocative Efficiency," Sustainability, MDPI, vol. 15(5), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    2. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    3. Phill Wheat & Alexander D. Stead & William H. Greene, 2019. "Robust stochastic frontier analysis: a Student’s t-half normal model with application to highway maintenance costs in England," Journal of Productivity Analysis, Springer, vol. 51(1), pages 21-38, February.
    4. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    5. William C. Horrace & Yulong Wang, 2022. "Nonparametric tests of tail behavior in stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 537-562, April.
    6. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    7. Arabinda Das, 2015. "Copula-based Stochastic Frontier Model with Autocorrelated Inefficiency," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(2), pages 111-126, June.
    8. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    9. Gholamreza Hajargasht & William E. Griffiths, 2018. "Estimation and testing of stochastic frontier models using variational Bayes," Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
    10. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    11. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    12. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    13. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    14. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    15. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    16. Kamil Makieła, 2017. "Bayesian Inference and Gibbs Sampling in Generalized True Random-Effects Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 69-95, March.
    17. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    18. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Department of Economics - Working Papers Series 1092, The University of Melbourne.
    19. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    20. Papadopoulos, Alecos & Parmeter, Christopher F., 2021. "Type II failure and specification testing in the Stochastic Frontier Model," European Journal of Operational Research, Elsevier, vol. 293(3), pages 990-1001.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:8:y:2020:i:2:p:13-:d:347990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.